ADME NTP Study S0829 1-Bromopropane Toxicokinetics

The contractor used the abbreviation 1-BrP for the test article. Sex/Species: male F344 rats. Vehicle: intravenous, 0.9% saline and 5% Alkamuls.

CASRN 106-94-5

Radiolabeled with carbon-14 in the C-1 position; 1-Bromopropane, [1-14C]

Studies Performed:

- Single 5 mg/kg intravenous dose with blood sampling 2, 5, 10, 20, 30, 45, 60, 90, 120, 150, 180, and 240 minutes postdose. (n=5)
- Single 20 mg/kg intravenous dose with blood sampling 2, 5, 10, 20, 30, 45, 60, 90, 120, 150, 180, and 240 minutes postdose. (n=5)

Toxicokinetics:

Mean blood 1-BrP concentration-time data were analyzed by model-dependent methods using WinNonlin (Scientific Consulting Inc., Apex, NC). A biexponential function was used to generate pharmacokinetic parameters for each set of data (weighting: 1/y²). A two-compartment pharmacokinetic model gave the best fit to the blood 1-BrP concentration-time data. Plasma levels were displayed in figures (not shown) and individual animal data (separate file).

Note on Accessibility: Persons with disabilities or using assistive technology may find some documents are not fully accessible. For assistance, contact <u>Central Data</u> <u>Management</u> or use our <u>contact form</u> and identify the documents/pages for which access is required. We will assist you in accessing the content of the files. NIEHS has helpful information on accessibility.

Table 1

Parameter	Units	5 mg/kg		20 mg/kg	
		Mean	SE ^b	Mean	SE
А		3.75	1.35	12.16	5.31
a		14.36	4.53	14.67	5.59
В		0.37	0.13	1.51	0.3
β		1.76	0.35	0.82	0.09
AUC $_0^\infty$	h*µg/mL	0.47	0.06	2.68	0.26
Τ _{1/2α}	h	0.05	0.02	0.05	0.02
Τ1/2β	h	0.39	0.08	0.85	0.09
K10	1/h	8.73	2.34	5.11	1.77
K12	1/h	4.49	2.15	8.03	3.85
K21	1/h	2.89	0.85	2.34	0.61
Co	μg/mL	4.12	1.39	13 .67	5.36
Vc	mL	303	102	366	143
CL	mĽ/h	2648	325	1869	184
AUMC	h²*µg/mĽ	0.14	0.02	2.32	0.27
MRT	h	0.29	0.05	0.87	0.10
V _{ss}	mL	775	187	1619	286

1-BrP Pharmacokinetic Parameters^a in Male F-344 Rats Derived After Intravenous Bolus Administration of 1-BrP

^a Pharmacokinetic parameters calculated from mean 1-BrP blood concentrations (n=5 rats).

^b Standard Error of estimated parameter mean.

Abbreviations of Estimated and Secondary parameters:

A, The zero time intercept associated with the Alpha phase;

 $\boldsymbol{\alpha},$ Rate constant associated with the distribution phase;

 $T_{1/2\alpha},$ Half-life associated with the macro constant $\alpha;$

B, The zero time intercept associated with the beta phase;

 β , Rate constant associated with the elimination phase;

 $T_{1/2\beta}$, Half-life associated with the macro constant β ;

AUC $_{0}^{\infty}$, Area under the concentration time curve from time zero to infinity;

 C_0 The concentration extrapolated at time = 0.

V_c, Volume of the central compartment;

CI, Systemic clearance;

AUMC, Area under moment curve

MRT, Mean residence time, and

 V_{ss} , Volume of the distribution at steady state.