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1. Combining Visualization Methods with Structural Equation Models 

for the Analysis Of Chemical Mixture Data 
Presenting Author: Sophia Banton 

Organization: Emory University 

Contributing Authors: Sophia A. Banton1, 2, Ruiyan Luo2, and Shuzhao Li1 
1
Department of Medicine, Emory University, Atlanta, Georgia 

2
School of Public Health, Georgia State University, Atlanta Georgia 

Abstract: 

Introduction: Epidemiological studies frequently contain numerous exposure variables that function as 

predictors and confounders in the statistical analyses that describe them. Given the large number of 

variables of interest, data reduction methods that preserve the data quality are of utmost importance. It 

is often necessary in environmental studies to extract a small selection of variables from a larger 

measurement set for use in hypothesis generation and/or testing. We thus propose combining 

visualization methods with structural equation models for the analysis of these chemical mixture data. 

Methods: We used the two simulated data sets and the real world dataset representing chemical 

exposures and outcomes from this workshop. Each data set represented a prospective cohort, a cross-

sectional study, and a prospective cohort, respectively. The predictors for the first simulated data set 

and the real world data set were log transformed to achieve an approximately multivariate normal 

distribution. The second data set was multivariate normal and no transformations were necessary. 

Following transformation, principal component analysis (PCA) was used to observe the spread of the 

independent variables alone and then in the presence of the outcome (Y). Next, Spearman correlations 

(Spearman’s ρ > 0.6, p < 0.01) were used to generate matrixes and correlations to visualize the 

relationships between and among variables. Hierarchical clustering was used to evaluate the influence 

of covariates as statistical confounders and visualized with heat maps, where categorical covariates 

were treated as class labels. Finally, the combination of the patterns detected above and the 

dendrograms constructed in parallel with the heat maps were used to generate a structural equation 

model (SEM) of observed variables (path analysis) to explain the relationships among the variables. The 

SEM network consists of a system of simultaneous linear regression equations that explain the 

relationships between the variables in each data set. All statistical analyses were conducted using R. All 

figures were generated using R with the exception of the PCA plots that were generated using Python. 

Results: With the assistance of data visualization, a structural equation model was derived for each data 

set. The patterns observed for each graphical representation of the data were useful in the construction 

of the statistical model.  

For the first data set, the PCA plot of all variables (Figure 1A), alongside the heat map (Figure 1C), 

demonstrated that covariate Z was confounding with Y and multiple independent variables. Spearman 

correlation in the form of a matrix (Figure 1B) and correlation plot (Figure 1D) in combination with 
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hierarchical clustering revealed that there were two major clusters of variables, both in the absence and 

presence of the outcome Y. The influences of the variables were supported by the SEM network (p < 

0.0001) (Figure 1E), in which the edges represent the magnitude of the path coefficients. As shown by 

the SEM system, the variables that contribute most to the outcome Y are X1, X4, X5, and X7 while 

controlling for the confounding effects of Z. The variables X2 and X3 are highly correlated with X1 and 

therefore indirectly affect the outcome Y. A similar pattern was observed for variable X6, which is highly 

correlated with X5. 

For the second data set, the PCA plot of all variables (Figure 2A), alongside the heat map (Figure 2C) 

showed no confounding influence of any covariates (Z1 yellow and Z2 pink). Rather, covariate Z1 was 

shown to be uncorrelated with any of the variables analyzed and was subsequently removed from the 

analysis. The Spearman correlation matrix (Figure 2B) and network (Figure 2D) revealed that the second 

covariate Z2 was weakly correlated with a number of independent variables, and the third covariate (Z3) 

was only associated with the outcome variable. These observations were also supported by the SEM 

system (p < 0.0001) (Figure 2E). As shown by the path model, the variables that contribute most to the 

outcome Y are X8, X14, and Z3. The presence of X8 and X14 in the fitted model is interchangeable. 

Several variables (X4, X11, and X12, X4) directly influence X14, and this is significant since X14 links the 

outcome Y to remaining variables in the model. In the absence of variable identifications, the inference 

can be made that biomarkers X14 and X8 are on the causal path to Y, if Y is indeed a true outcome and 

not a covariate itself. 

For the real world data set, the PCA plot (Figure 3A) showed that the four PBDE chemicals (dark red) and 

the remaining chemicals (PCBs, DDE, chlordanes, and HCB) formed two distinct clusters. The Spearman 

correlation matrix (Figure 3B) and network (Figure 3C) revealed that the two clusters were connected to 

the outcome MDI through the maternal age at delivery predictor. The strong association of age with the 

chemicals and covariates is demonstrated by the heat map in which the subjects are classified by age 

group (Figure 3D). These observations were also supported by the SEM network (p < 0.0001) (Figure 3E). 

As shown by the path model, the variables that contribute directly to the outcome MDI are the 

covariates for maternal education and maternal race. These variables are in turn associated with 

maternal smoking status and maternal age at delivery, respectively. Maternal age is directly related to 

the exposures PBDE47, pcb74, and pcb194, and each of these chemicals is a hub for the remaining 

chemical exposures in the data set. 

Conclusions: Our analyses indicate that the combination of data visualization and structural equation 

models can be useful for the assessment of chemical exposures in epidemiology. While Spearman 

correlation was used in the step of variable selection, future research will examine the utility of 

alternatives, including partial correlation and mutual information. 
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2. A Methodology for Building Bayesian Networks to Evaluate the 

Health Effects of Environmental Chemical Mixtures 
Presenting Author: Sarah Kreidler 

Organization: Neptune and Company 

Contributing Authors: Sarah M. Kreidler, Ph.D., D.P.T., Tom Stockton, Ph.D., Paul K. Black, Ph.D., and 

Stephen M. Beaulieu, MSPH 

Abstract: 

Predicting adverse human health effects due to exposure to chemical mixtures continues to be a 

challenging problem. Epidemiological studies are expensive and time consuming, and the toxicology of 

complex chemical mixtures (e.g., synergistic and antagonistic effects) is incompletely understood. 

Nevertheless, NIEHS and other federal agencies have a responsibility to manage public health risks. 

There is a need for better predictive modeling approaches that can support these efforts – specifically, 

to elucidate the relationships among chemical exposures and population characteristics. We propose a 

methodology for building Bayesian networks to evaluate the health effects of chemical mixtures 

exposure. The proposed methodology is designed to 1) identify the causal structure, when unknown, 

among exposures and outcomes through a combination of exploratory data analysis (EDA) and machine 

learning, 2) estimate individual and joint effects of exposures on health outcomes, and 3) evaluate the 

sensitivity of the predicted effects to the choice of causal structure. 

We represent the causal structure as a directed acyclic graph (DAG). To estimate the DAG, we create a 

maximal, starting graph based on a priori knowledge. For example, if a variable Z is a known confounder 

for outcome Y and exposure X, we draw edges from Z to X, and from Z to Y. If no a priori information is 

available, undirected edges are added between all variables. Once the initial structure is created, we add 

and subtract edges based on EDA. In the EDA step, we assume that causal relationships cannot exist if 

no correlation is present. Therefore, edges are removed if no significant association is observed 

between the exposure and the outcome. When confounders are present, edges are removed between 

an exposure and the outcome if no linear association is observed when controlling for the confounders. 

If undirected edges remain after EDA, a hill-climbing algorithm is applied to determine the final DAG. 

Once the causal structure is identified, the joint distribution is factored based on the causal structure. 

Parameters are then estimated via maximum likelihood. 

We applied the methodology to three data sets containing real or simulated observational data for 

chemical mixtures exposures. The data sets represented two different types of study data, with the first 

representing a prospective cohort epidemiologic study, the second representing a cross-sectional study, 

and the third being real data from a prospective study of child mental development after maternal 

exposure to dioxin-like compounds. For each data set, the Bayes net was built using a training set 

consisting of 80% of the data. The predictive accuracy of the network was assessed on the remaining 

data. 
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In the first data set, the exposures were known to occur prior to the outcome, there was a single 

potential confounder, and no variables were colliders or intermediate variables. The exposure variables 

were highly skewed and, therefore, were log transformed prior to analysis. After reducing the DAG, the 

parents of the outcome, Y, were Z, log(X1), log(X2), log(X3), log(X5), log(X6), log(X7). On the training set, 

the conditional distribution of Y was assumed Gaussian, with an estimated mean of 19.53 + 11.67Z + 

3.58log(X1) + 0.75log(X2) – 0.48log(X3) – 4.11log(X5) + 0.21log(X6) + 3.86log(X7) and a standard 

deviation of 3.05. On the test set, the Bayes net had a mean absolute prediction error of 2.64 for Y. 

Simulated data set 2 contained cross-sectional data with fourteen exposure biomarkers, two continuous 

potential confounders, and one potential binary confounder. No additional information was known 

regarding the causal structure. Both EDA and hill climbing were used to obtain the final DAG. In the 

reduced DAG, the parents of the outcome, y, were z3, x1, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, 

and x14. On the training set, the conditional distribution of y was assumed Gaussian, with an estimated 

mean of 2.98 - 0.61z3 + 0.02x1 - 0.04x3 + 0.11x4 + 0.01x5 + 0.05x6 - 0.03x7 + 0.04x8 + 0.04x9 + 0.05x10 

+ 0.1x11 + 0.11x12 - 0.04x13 + 0.07x14 and a standard deviation of 0.47. On the test set, the Bayes net 

had a mean absolute prediction error of 0.37 for y. 

The dioxin exposure data set included maternal education, age, race, smoking status, and sex of the 

child as covariates. Exposures included 21 different dioxin-like compounds. The outcome was the 

Mental Development Index (MDI) of the Bayley Scale of Infant Development-II (BSID-II). EDA and hill 

climbing were used to simplify the DAG. In the final DAG, the parents of the outcome, MDI, were 

maternal education, age, race, and smoking status, serum PCB194, and serum PCB199. On the training 

set, the conditional distribution of MDI was assumed Gaussian. The estimated means and standard 

deviations were dependent on the values of the categorical covariates. On the test set, the Bayes net 

had a mean absolute prediction error of 10.06 for MDI. 

The results from the proposed methodology are promising. Low prediction error was achieved for all 

data sets, even when limited a priori knowledge of the causal structure was available. The methodology 

is advantageous because it 1) accommodates a variety of complex chemical mixtures data, 2) combines 

scientific expertise and data-driven machine learning to build the causal structure, 3) supports sensitivity 

analysis by allowing comparison of predictive accuracy for different starting DAG structures, and 4) 

allows for new data to be incorporated as they become available, providing a solution that can adapt to 

advances in the state of knowledge. 

Potential improvements to the method include refinements to causal structure learning via methods 

such as gradient boosting and handling of non-Gaussian outcomes, adoption of a more rigorous cross-

validation strategy, and techniques to estimate subsets of the full joint distribution when remaining 

exposure variables are unknown. In addition, it would be useful to build Web-based tools to support 

collaborative exploration of different DAG structures by multiple researchers. 

We believe that the use of Bayesian networks that combine expert and data-driven knowledge 

represents a practical and robust approach to the analysis of chemical mixtures data, one that ultimately 

will lead to significant improvements in our ability to characterize potential risks to public health.  
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3. A Statistical Framework for Assessing Association Between Health 

Effects and Combined Exposures 
Presenting Author:  Shuo Chen 

Organization: University of Maryland, College Park 

Contributing Authors:  Shuo Chen, Jing Zhang, Chengsheng Jiang, and Don Milton 

Abstract:  

The association analysis between exposures of environmental chemical mixtures and health effects is 

challenging because numerous exposures could be highly correlated and have non-linear and joint 

impact on health. Regression analysis including shrinkage regression techniques (e.g. LASSO and elastic 

nets) as widely used tool is often limited for this purpose since there have been few attempts to 

automatically detect the suitable non-linear transformation (e.g. polynomials) of exposure and 

interactions between multiple exposures. To fill the gap, we develop a novel statistical procedure 

consisting four steps to address this challenging issue. Firstly, we conduct the screening step to limit our 

scope within the exposures that are correlated to health effects with loose a threshold (e.g. p-value 

<0.1). We next leverage likelihood principle as criteria to determine the suitable univariate 

transformation each of supra-thresholded continuous exposures (e.g. tuning the exponential term from 

0.1 up to cubic terms and natural cubic splines). Moreover, we examine whether the linear combination 

of highly correlated exposures improves the model fit than individual exposures. In the third step, we 

apply a least angle regression (LARS) procedure to introduce exposures (or linearly combined/joint 

exposures) one by one, and when introducing a new exposure or confounding variable we examine the 

interaction with the pre-entered covariates. Lastly, we conduct model verification by using cross-

validation and boot-strapping techniques and prune the final model for robustness and reproducibility. 

We implement and apply this algorithm to both simulated data sets to seek the optimal regression 

model that reveal the associations between health effects. As a result, the optimal model for data set 1 

is : X12 is the sum of X1 and X2. The estimated parameters and corresponding p-values is showed in 

Table 1. All exposures are significantly associated with health outcomes with most p-values <0.001 

(other than p-value of  ). X12 is positively associated with the health effects, while X4 has a negative 

effect. X5 and X7 have non-linear trend associations. The confounding factor Z also modifies the effect 

of associations of X12 and X5. The adjusted R2 for the selected model is 94% and MSE is 2.659 on 491 

degrees of freedom. When treating the exposures as multivariate normally distributed variables, we 

observe that several exposures X1, X2, X3 are highly correlated, and similarly for X5 and X6.For synthetic 

data 2, we identify a model as:  The estimated parameters and corresponding p-values is showed in 

Table 1. All exposures are significantly associated with health outcomes, with estimated parameters and 

corresponding p-values demonstrated in Table 2. All exposures have positive effects, and z3 also 

modifies the associations. The adjusted R2 for the selected model is 53% and MSE is 0.45 on 492 

degrees of freedom. Different from data set 1, most variance (roughly 80%) are explained by 

confounding factors  When treating the exposures as multivariate normally distributed variables, we 

observe that several exposures X3, X4, X5 are highly correlated, and similarly for X12 and X13.  
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Figure 1: Figure 1: Flowchart of the algorithm

Table 1: Regression results for data set 1

Estimate      Std. Error t value Pr(>|t|)
(Intercept) 15.1829 0.5745 26.43 0.0000

Z 15.1113 0.9025 16.74 0.0000
X12 3.8273 0.3315 11.54 0.0000

X4 -1.0121 0.1526 -6.63 0.0000
I(X5^0.5) -8.1576 0.3819 -21.36 0.0000

X7 6.9422 0.3686 18.84 0.0000
I(X7^2) -1.0474 0.0907 -11.55 0.0000

Z:X12 -1.2395 0.3596 -3.45 0.0006

Y
Z:I(X5^0.5) -1.4362 0.5625 -2.55 0.0110√ √

= β0 + β1Z + β2X12 + β3X12 × Z + β4X4 + β5 X5 + β6 X5 × Z + β7X7 + β8X72 + ε
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Table 2: Regression results for data set 2

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0527 0.1683 18.14 0.0000

z2 0.0089 0.0012 7.40 0.0000
z3 -0.2271 0.0786 -2.89 0.0040
x6 0.1190 0.0315 3.78 0.0002

x12 0.5705 0.0875 6.52 0.0000
x11 0.0969 0.0353 2.74 0.0063

z3:x6 -0.0952 0.0387 -2.46 0.0141
z3:x12 -0.6523 0.1191 -5.48 0.0000

y = β0 + β1z2 + β2z3 + β3x6 + β4x6 × z3 + β5x12 + β6x12 × z3 + β7x11 + ε
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4. Bayesian Kernel Machine Regression for Estimating the Health 

Effects of Multi-Pollutant Mixtures 
Presenting Author: Birgit Claus Henn 

Organization: Boston University 

Contributing Authors: Jennifer Bobb, Linda Valeri, Birgit Claus Henn, and Brent Coull 

Abstract: 

We applied Bayesian kernel machine regression (BKMR) to the two simulated datasets. This approach, 
described in detail in Bobb and Valeri (2014), estimates the multivariate exposure-response function. It 
also estimates the posterior inclusion probability for each of the mixture components, which quantifies 
(on a scale from 0 to 1) how important the pollutant is in predicting the health outcome. 

Data Set #1: 

We first z-scored each of the pollutants (𝑥𝑚: 𝑚 = 1, … ,7) so that they would be on the same scale. We 
then fit the model 𝐸(𝑌𝑖) = 𝑓(𝑥𝑖1, 𝑥𝑖2 … , 𝑥𝑖7) +  𝛾𝑧𝑖, adjusting for the confounder. The posterior 
inclusion probabilities were high (>0.95) for pollutants 1, 2, 4, 5, and 7 and low (<0.05) for pollutants 3 
and 6, suggesting that pollutants 1, 2, 4, 5, and 7 contribute to the health outcome while pollutants 3 
and 6 do not. Higher exposure levels were associated with higher levels of the outcome for some of the 
pollutants (𝑥1, 𝑥2, 𝑥7) and with lower levels of the outcome for others (𝑥4, 𝑥5), for the other pollutants 
at their median value. 

BKMR estimates the exposure-response function 𝑓 in a very flexible way. Therefore, any cross-section of 
𝑓 can be plotted as desired. See Figures 1, 2, and 3 as examples. Our results suggested both nonlinear 
and interactive effects of the mixture components. The coefficient of determination (𝑅2) was 0.95. The 
residual standard deviation (posterior mean) was 2.46 (95% credible interval: 2.31—2.62). 

We define two exposures to interact if the joint exposure-response function 𝑓(𝑥𝑚, 𝑥𝑚′) cannot be 
expressed as 𝑓(𝑥𝑚) + 𝑓(𝑥𝑚′). We investigated possible two-way interactions by making plots, such as 
those in Figure 2. Visual inspection of these plots indicated that the shape of the exposure response 
function of one pollutant 𝑥𝑚 did not vary qualitatively depending on the level of the second pollutant 
𝑥𝑚′. To investigate whether these potential two-way interactions were statistically significant, we fit 
parametric models based on the BKMR fit, both with and without interaction terms. In particular, we fit 
a regression model with natural cubic splines with 3 degrees of freedom for pollutants 1, 2, 4, 5, and 7 
and linear terms for pollutants 3 and 6 and for the potential confounder. We conducted an analysis of 
variance (ANOVA) for the addition of interaction terms. This analysis indicated statistically significant 
interactions of pollutants 1 and 2 (P = 0.03), 1 and 7 (P < 0.01), 5 and 7 (P < 0.01), 2 and 7 (P < 0.01), and 
marginally significant interaction of pollutants 2 and 5 (P = 0.10). Figure 3 investigates potential three-
way interaction by plotting the joint exposure response function of pollutants 1 and 7, with pollutant 5, 
fixed at its 10th, 50th, and 90th percentiles. The corresponding ANOVA test based on a parametric model 
did not indicate statistically significant three-way interaction for these pollutants. Similarly, we did not 
find statistically significant three-way interaction among pollutants 1, 2, and 7. 
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Data Set #2: 

We first z-scored the pollutants (𝑥𝑚: 𝑚 = 1, … ,14) so that they would be on the same scale. We then fit 
the model 𝐸(𝑌𝑖) = 𝑓(𝑥𝑖1, 𝑥𝑖2 … , 𝑥𝑖14) +  𝜸𝒛, adjusting for the three potential confounders (𝒛). The 
highest posterior inclusion probabilities were 0.63 for pollutant 12 and 0.58 for pollutant 6. Plots of the 
estimated exposure-response function are in Figures 4 and 5. From the exposure-response function, we 
also estimated various quantities to summarize the health effect of the mixture (Figure 6): the total 
effect (6A), pollutant-specific effects (6B), and the successive contributions of each pollutant to the total 
effect (6C). 

With the high degree of correlation among several pollutants, it is hard to definitively say which 
pollutants contribute to the outcome. The most likely candidates are pollutants 1, 6, and 12. The least 
likely candidates are 3, 4, 5, and 7 (Figure 6B). For most pollutants, higher exposures were associated 
with higher levels of the outcome (Figure 4), though these associations were not statistically significant 
(Figure 6B). This lack of statistical significance could be due to colinearity as all pollutants were 
statistically significant in single-pollutant models (results not shown). Overall, higher levels of exposure 
to the mixture were associated with higher levels of the health outcome (Figure 6A). The more 
pollutants an individual is exposed to at high levels, the greater the risk tended to be (Figure 6C), though 
this increasing risk with increasing numbers of pollutants tapered off after approximately 6 pollutants (1, 
12, 6, 10, 14, 11). 

We investigated possible two-way interactions by plotting 𝑓(𝑥𝑚, 𝑥𝑚′) for each pair of pollutants 
(𝑚, 𝑚’). Figure 5 shows plots that were most suggestive of interaction. To investigate whether these 
suggestive interactions were statistically significant, we fit parametric models based on the BKMR fit, 
both with an without interaction terms. In particular, we fit a regression model with linear and quadratic 
terms for pollutants 2, 12, and 13 and linear terms for the other pollutants and for the potential 
confounders. We conducted an analysis of variance (ANOVA) for the addition of interaction terms. This 
analysis indicated statistically significant interactions of pollutants 12 and 13 (P < 0.01), 2 and 13 (P < 
0.01), 2 and 12 (P < 0.01), and marginally significant interactions of pollutants 9 and 13 (P = 0.07). Figure 
6B also supports this result, indicating that the pollutant-specific health effect estimates for pollutants 2, 
12, and 13 varied depending on the levels of the other pollutants. 

The coefficient of determination (𝑅2) was 0.56. The residual standard deviation (posterior mean) was 
0.45 (95% credible interval: 0.42—0.48). 
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Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures 
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Data Set #1: Chemical Mixture Simulated Data 
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Figure 1: Estimated 
exposure-response under 
BKMR for each pollutant, with 
the other pollutants fixed at 
their median value. 
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(solid line), 50th (dashed line), and 90th (dotted line) percentile.  
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Data Set #2: Mixture Simulated Data with an Environmentally Relevant Correlation Pattern 

	
  
	
  	
  	
  	
  

Figure 4: Estimated exposure-response under 
BKMR for each pollutant, with the other 
pollutants fixed at their median value (top panel). 
Four of the functions with pointwise 95% credible 
intervals are highlighted (bottom panel). 
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Figure 5: Estimated exposure-response function under 
BKMR for select pairs of pollutants. Shows 𝑓(𝑥!   |  𝑥!!), where 
𝑥!! is fixed at its 10th percentile (solid line), 50th percentile 
(dashed line), and 90th percentile (dotted line). The other 
pollutants are fixed at their median value. 

Figure 6: Estimated change in risk (95% credible 
intervals) when (A) all of the pollutants are at a 
particular percentile (25th to 75th) of their distribution 
to when all of the pollutants are at their median 
value; (B) comparing a pollutant at the 75th 
percentile to the 25th percentile, for all other 
pollutants fixed at either their 25th (red points), 50th 
(black points), or 75th (blue points) percentile; and 
(C) comparing a subset of pollutants at their 75th 
percentile to their 25th percentile, for the others 
fixed at their median value. Pollutants are 
successively added to the subset from left to right 
(e.g., left point denotes pollutant X1, second point 
from left denotes X1 plus X12, etc). 
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5. Cheminformatics Approaches to Analyze the Effects of 

Environmental Chemical Mixtures 
Presenting Author: Denis Fourches 

Organization: North Carolina State University 

Contributing Authors: Denis Fourches*,1 and Ryan Lougee2 

1
 Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA. 

2
 Department of Toxicology, North Carolina State University, Raleigh, North Carolina, USA. 

Abstract: 

Individuals in modern societies are exposed to multiple and diverse chemicals from various sources, 

such as food, medicines, cosmetics, and environmental pollutants. As expensive and time-consuming 

toxicological studies are traditionally done one chemical at a time, developing cheminformatics methods 

to analyze and reliably forecast the overall biological outcomes of exposure to chemical mixtures is of 

high importance. Herein, we are using different cheminformatics techniques that take as inputs a series 

of variables characterizing the toxicants and/or the nature of the exposure in order to forecast the 

overall health outcomes. 

Regarding Simulated Dataset 1, we analyzed the contributions of each exposure using multi-linear 

regression (MLR) representing Y (continuous modeling) as a function of the exposure variables. As 

shown in Table 1, certain variables, such as x1 (R2=0.78 correlation with Y; MLR regression coefficient 

equal to +2.9), x5, and x7, are very important for the overall prediction performances of the MLR model 

(R2 =0.92, MSE = 9.6, Figure 1).  

Regarding Simulated Dataset 2, the obtained MLR models were significantly less predictive (R2 ~0.52, 

MSE = 0.6, Figure 2). Very weak linear contributions indicated the need to use non-linear techniques, 

such as Support Vector Machines and Associative Neural Networks. The SVM model for three-classes 

obtained very reasonable prediction performances. 

Regarding the NIEHS REAL WORLD dataset, we analyzed the whole set of 270 mother-child pairs, the 

associated Mental Development Index (MDI) scores, and the distributions of the 22 exposure chemicals. 

First, after data preprocessing steps, confounder-adjusted associations between the 22 chemicals and 

MDI scores were computed using a two-stage hierarchical analysis. Most of the measured exposures 

were associated with negligible absolute differences in MDI scores. Second, the molecular structures of 

the chemicals were taken into account to compute 2D fragment descriptors and generate CBRA1 radial 

plots (Figure 3). Interestingly, structurally similar compounds shared similar exposure distribution in the 

studied population of children. Third, ADDAGRA2 visualization plots confirmed the outlying distributions 

for DDE and PBDE47, the high similarity of exposure within the PCBs and the PBDEs, as well as the very 

weak associations with MDI scores. 

We will also discuss the rationale and benefits of characterizing toxicants with molecular descriptors 

computed from their chemical structures to better analyze such types of mixture exposure data. 
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Simulated Dataset 1 

Table 1. Exposure coefficients found in the best MLR model (R2=0.92, MSE = 9.6) and the different folds 
according to a 5-fold cross-validation procedure.  

 
Full Set 

 
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

 
p value 

Intercept 14.36 
 

15.15 14.35 14.15 13.97 14.15 
  X1   2.91 

 
2.74 2.91 3.24 2.85 2.88 

 
 < 2e-16 

X2   3.19 
 

2.70 2.95 3.21 3.75 3.42 
 

4.06E-07 
X3   -0.01 

 
0.27 0.15 -0.30 -0.06 -0.13 

 
0.981 

X4   -0.98 
 

-0.911 -1.07 -0.93 -1.16 -0.88 
 

6.31E-08 
X5   -3.55 

 
-3.60 -3.44 -3.55 -3.57 -3.54 

 
 < 2e-16 

X6   -0.14 
 

-0.39 -0.18 -0.01 -0.12 -0.01 
 

0.497 
X7   2.93 

 
2.75 2.91 3.00 2.99 3.00 

 
 < 2e-16 

Z    11.41 
 

11.71 11.36 11.29 11.45 11.27 
 

 < 2e-16 

 

 
Simulated Dataset 2 

 
NIEHS Real 

World Dataset 

 

R2=0.92 
MSE=9.6 

Fig 1. 
Predicted 

versus 
experimental 

outcomes 
using one 

individual MLR 
model  

Fig 2. 
Predicted 

versus 
experimental 

outcomes 
using one 

individual MLR 
model  

R2=0.52 
MSE=0.6 

 

Fig 3. CBRA radial 
plots for PBDE47, 
DDE, and PCB194. 

Structural 
neighbors are 

represented in 
black, whereas 

neighbors in the 
Children Exposure 

space are in 
colored in red.  
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6. A Two Step Variable Selection Procedure Using Prioritization of 

Interactions Followed by LASSO 
Presenting Author: Jiang Gui 

Organization: Dartmouth College 

Contributing Authors: Jiang Gui and Margaret R. Karagas 

Abstract: 

A two step variable selection procedure using prioritization of interactions followed by LASSO. 

We propose a LASSO penalized regression approach to select relevant predictors and interactions to 

build a predictive model for the outcome of interest. The interactions mentioned in this abstract are all 

statistically significant – that is defined as departure from additivity in linear regression model. First, for 

each predictor x, we used cubic smoothing spline to smooth the outcome and x and plotted them to 

visualize their functional relation. If a non-linear relationship was identified, we tried possible 

transformations, such as log, square root, to remove the nonlinearity. We then selected candidate 

interactions using two methods: 

1. For each pair of predictors, we calculated the correlation between the cubic spline smoothed 

outcome and the product of the two predictors. Then we calculated the same correlation using 

the two predictors separately. We ranked the pairs based on the marginal difference between 

the first correlation the maximum of the second set of correlations. 

2. We used linear regression to calculate and rank the adjusted p-value for interaction effects for 

any pair of two predictors after adjusting covariates. 

Top models from both methods and other univariate predictors were entered into a LASSO penalized 

regression model. Cross-validation was used to select the turning parameter. One of the strengths of 

LASSO penalized method is that it selects at most one variable from a group of highly clustered 

predictors. This was a useful remedy for this set of simulation data as some of the exposure variables 

were correlated. 

For dataset 1, we found that square root transformation improved the linear relationship between the 

outcome and all predictors. However, we did not find any statistically significant interactions. We fitted 

a LASSO penalized regression on the outcome and square root transformed predictors and nuisance 

variable Z. Using cross-validation, we were able to identify a predictive model using X1, X2, X4, X5, X7, 

and Z. We refit a linear regression model using the 5 transformed predictors and nuisance variable Z to 

obtain a coefficient of determination (R square) of 0.9385 (Table 1). 

For dataset 2, we did not find any transformation that improved the linear relationship between 

outcome and predictors. In search for candidate interactions, from the first method, we found that the 

product of X2 and X12, X2 and X13 improved the univariate correlation by a margin of 0.202 and 0.203 
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respectively (i.e., became linear). Notably, the 2-way correlations, both with X2, were in the opposite 

direction, suggesting a three-way interaction among X2, X12, and X13 (Figure 1). Using the second 

method, we identified a significant interaction between X3 and X10 (Table 2). We then fit a LASSO 

penalized regression model using the three way interaction of X2, X12, X13 and two way interaction of 

X3 and X10, the remaining predictors and covariates. Cross-validation was applied to select the turning 

parameter and the final model that included Z2 , Z3, X1, X6, X14, two way interactions of X3 and X10 and 

three way interactions of X2, X12, X13 (Table 3). 

We applied this method to the pregnancy and birth cohort study. First, we used scatter plot to check 

whether the variables were normally distributed. We found that most predictors were right-skewed. We 

used log transformation to stabilize predictor’s variance. We obtained scatter plot on transformed data 

and found that all variables follow normal distribution. Based on correlation difference between 

interaction and main effect, we identified five pairs of exposures. We ran a LASSO penalized regression 

model using the 5 two-way interactions, the remaining predictors and covariates. The final model 

included lip_PBDE_99, lip_PBDE_153, lip_pcb105, lip_pcb146, lip_pcb187, lip_pcb194, and an 

interaction between lip_oxychlor and lip_pcb187. We refit a regular linear regression model to get the 

unbiased estimate (Table 4). 
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Table 1: Final model for data set 1.   

Predictors Coefficients P-value 

Intercept 11.2091 < 2e-16 

Square root (X1) 8.3892 < 2e-16 

Square root (X2) 3.7957 0.000222 

Square root (X4) -2.5159 7.11e-11 

Square root (X5) -8.7818 < 2e-16 

Square root (X7) 7.5241 < 2e-16 

Z 10.5147 < 2e-16 

        

Figure 1: Cubic spline smoothed plot indicating a three-way interaction. 

 

Figure 1 a) is the cubic spline smoothed scatter plot of X2 vs Y. b) is the cubic spline smoothed 

scatter plot of X12 vs Y. c) is the cubic spline smoothed scatter plot of X2*X12 vs Y. Here 

X2*X12 denote the inner product of X2 and X12. d) is the spline smoothed scatter plot of 

X2*X13 vs Y.    
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Table 2. Top adjusted p-value for all pair-wise interactions.  

Interaction model Adjusted p-value 

X2, X13 0.0030 

X3, X10 0.0031 

X4, X10 0.0033 

X8, X10 0.0055 

X5, X10 0.0076 

Table 3: Final model for data set 2.   

Predictors Coefficients P-value 

Intercept 3.198581 < 2e-16 

X1 0.069188 0.03263 

X6 0.055202 0.04932 

X3 -0.141024 0.02661 

X10 0.016664 0.67759 

X2 -0.186233 0.00628 

X12 0.347766 0.48824 

X13 1.086567 0.02339 

X14 0.073957 0.71953 

Z1 0.004789 0.8427 

Z2 0.006857 0.00012 

Z3 -0.605989 < 2e-16 

X3*X10 0.0523931 0.0033 

X2*X12 0.029869 0.88911 

X2*X13 0.541121 0.0081 

X12*X13 -0.739856 0.04878 

X2*X12*X13 -0.339453 0.04612 

Table 4: Final model for real data.   

Predictors Coefficients P-value 

Intercept 98.5941 < 2e-16 

Log(lip_PBDE_99) -2.0353 0.00117 

Log(lip_PBDE_153) 0.6264 0.29476 

Log(lip_pcb105) 1.5771 0.04980 

Log(lip_pcb146) 1.0138    0.28819 

Log(lip_pcb187) -3.8250 0.00715 

Log(lip_pcb194)   4.4924    3.57e-06 

Log(lip_oxychlor) -0.4947 0.55563 

Log(lip_oxychlor)*Log(lip_pcb187) -0.4123 0.51372 

zchild_sex 0.4586 0.70301 

zmom_educ -2.6630   0.10391 

zmom_age -3.6674   0.00752 

zmom_race 1.4590 0.29696 

zmom_smoke   0.1482 0.94285 
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7. Integrating Toxicology and Mechanistic Evidence Into Complex 

Mixtures Analysis Using a Flexible Bayesian Approach 
Presenting Author: Ghassan Hamra 

Organization: Drexel University School of Public Health 

Contributing Authors: Ghassan Hamra, Richard MacLehose, David Richardson, Stephen Bertke, and 

Robert Daniels 

Abstract: 

Summary: When studying disease risk due to a group of exposures, researchers will often take two 

approaches: sum exposures based on weights derived from toxicology research or consider potentially 

correlated exposures individually. However, we are rarely interested in the effect of any individual 

exposure on disease risk, since exposures always occur together. Weights, problematically, do not 

translate directly from toxicology to observational epidemiology research. When incorrect weights are 

applied, risk estimates will be incorrect because the summed exposures are effectively misclassified. 

Methods: I propose a Bayesian approach to allow flexibility in the estimation of weighted sums of 

complex mixtures. In the contexts of datasets 1 and 2, this model is of the following form: 

𝑌 =  𝛼 +  𝛽 (∑ 𝜔𝑖𝑥𝑖

𝐼

𝑖=1

+ 𝑟) + ∑ 𝜑𝑗

𝐽

𝑗=1

𝑧𝑗  

where Y is a linear outcome of interest (such as a biomarker of inflammation), zj are potential 

confounders, r is a reference exposure (often TCDD in toxicology), and xi are exposures for which a 

weight is estimated. This approach directly parameterizes weights that can otherwise be thought of as 

the ratio of two risk coefficients for two exposures of interest. I apply a second stage prior to the 

weights that truncates their estimation at zero; this ensures that implausible (negative) weights are not 

estimated. I further apply a hierarchical, group level mean to the weights to stabilize their estimation in 

the presence of statistical instability. 

Results: The table summarizes results for these methods applied to datasets 1 and 2. The first columns 

show the mean and SD for the risk coefficient and weights for a model with no prior applied. Estimated 

weights for dataset 1 include negative values, which are not plausible (i.e., an exposure cannot be 

weighted to be negative when summing with other exposures). When the truncation is applied, weights 

in both datasets gain substantial statistical precision. When a shared group mean is added to the 

truncation, weights in dataset 2 are stabilized toward it. While there is stabilization of some weights 

from dataset 1, results are less susceptible to shrinkage toward a group mean. This suggests that there is 

more support for a difference in weights for dataset 1. In both datasets, when the truncation and shared 

group mean are applied, risk estimates for the complex mixture are increased. The final columns show 
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results for estimation of weights when only a subset of the exposures is considered. Weights appear 

somewhat susceptible to changes in the other exposures included in the model. 

Conclusions: The proposed approach does not rely on a single fixed weight value for components of the 

pollutant mixture. This approach is contingent upon selection of a reference exposure, which is best 

determined directly from toxicological evidence. In the current example, I chose reference weights 

based on the exposure whose linear risk coefficient was smallest in a model including all the exposures. 

This approach is flexible, in that reliable evidence from toxicology can be directly applied to inform 

estimation of the weights from observational data. I will present results where a mixture prior is applied 

to estimation of the summed risk using the real world dataset at the NIEHS mixtures workshop July 13-

14, 2015. 
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no prior truncation truncation+shrinkage 

truncation +subset 
of exposures 

Dataset 1 mean SD mean SD mean SD mean SD 
 β  0.0344 0.0147 0.0244 0.0106 0.0655 0.0788 0.0591 0.0780 
 Weights          

  x1 96.5 33.6 149.3 51.3 91.2 59.1 103.0 58.2 
  x2 101.1 36.9 54.0 35.3 35.2 31.5 50.0 36.5 
  x4 -32.2 12.1 6.6 6.3 4.2 5.0 3.6 4.2 
  x5 -117.0 38.8 0.6 0.7 0.4 0.5 n/a n/a 
  x6 -4.9 7.5 1.2 1.3 0.7 1.0 n/a n/a 
  x7 97.0 32.4 127.5 43.3 78.8 50.8 n/a n/a 
  group mean n/a n/a n/a n/a 19.6 21.5 n/a n/a 

Dataset 2         
 β  0.00054 0.00017 0.00044 0.00013 0.00376 0.01036 0.00055 0.00021 
 Weights          

  x1 96.4 57.1 100.4 55.7 61.5 58.2 97.0 52.9 
  x2 46.2 53.4 63.9 44.8 48.2 49.9 62.1 43.5 
  x3 11.3 75.2 47.3 38.9 39.3 44.7 43.4 37.1 
  x4 40.0 77.0 52.4 41.9 41.5 46.0 49.8 40.3 
  x5 27.8 60.0 45.9 37.1 38.4 43.6 42.6 35.5 
  x7 26.9 73.1 65.3 50.0 48.6 51.7 84.0 57.0 
  x8 67.1 63.4 78.5 52.7 53.2 54.0 107.5 57.7 
  x9 62.6 72.3 79.6 55.6 54.1 54.9 110.6 61.3 
  x10 87.8 64.4 99.9 58.2 61.3 58.8 n/a n/a 
  x11 82.2 68.8 93.0 58.4 59.1 58.0 n/a n/a 
  x12 84.1 86.6 95.3 64.1 58.2 58.0 n/a n/a 
  x13 42.2 87.1 80.9 58.9 53.9 55.3 n/a n/a 
  x14 93.5 69.9 94.8 60.0 58.4 57.3 n/a n/a 
  group mean n/a n/a n/a n/a 40.9 43.2 n/a n/a 

*x3 and x6 are the reference exposures in datasets 1 and 2, respectively. 

1. Hamra GB, MacLehose R, Richardson D, Bertke S, Daniels RD. Modelling complex mixtures in 
epidemiologic analysis: additive versus relative measures for differential effectiveness. 
Occupational and environmental medicine. 2014;71(2):141-146. 

23



 

8. Two-Step Shrinkage-Based Regression Strategy for Assessing Health 

Effects of Chemical Mixtures in Environmental Epidemiology 
Presenting Author:  Xindi Hu 

Organization: Harvard University 

Contributing Authors:  Xindi Hu 

Abstract:  

In epidemiological studies, an additive model with only main effects cannot sufficiently explain the 

relationship between chemical mixtures and the outcome. This abstract reports improved results from 

including variable interactions to capture the nonlinearity in the model, while keeping model parsimony 

by leveraging methods reported in recent literature. Here interactions are defined as “effect of one 

exposure on a health outcome depends on the level of other exposures.” 

Highlights: 

Dataset 1: 

 Exposures X1, X2, X5 and X7 contribute to the outcome, while others do not. 

 There are interactions between X1 and X5, X4 and X5, X1 and X7. 

 The joint effect of exposure to the mixture is more than additive. 

 Joint dose-response function with standardized coefficients is 

log(Y)=0.142*log(X1)+0.010*log(X2)-

0.128*log(X5)+0.132*log(X7)+0.188*Z+0.017*log(X1)*log(X5)+0.003*log(X4)*log(X5)-0.003* 

log(X1)*log(X7)-0.015*log(X5)*log(X5)-0.008*log(X7)*log(X7) 

 Mean square error = 0.045 

Dataset 2: 

 Exposures x3, x6, x8, x10, x12, and x14 contribute to the outcome, while others do not. 

 There are interactions between exposure and confounders, but no interactions between 

two exposures. 

 Joint dose-response function with standardized coefficients is 

y=0.0352*x3+0.031*x6+0.0247*x8+0.0272*x10+0.0401*x12+0.0335*x14+0.0983*z2-

0.2034*z3+0.023*x10*z2-0.0401*z3*x12-0.0147*z3*x6. 

 Mean square error = 0.120 

Real world dataset: 

 Lipid normalized PBDE-99, PCB-105, PCB-153, PCB-156, PCB-187, PCB-199, mom_educ and 

mom_smoke contribute to the outcome, while others do not. 
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 There are interactions between chemical exposures and between chemical exposure and 

maternal factors. 

 Mean square error = 0.195 

Introduction: 

LASSO (Tibshirani 1996) and the other shrinkage-based methods (ridge, elastic-net) have gained 

popularity for their ability to stabilize coefficient estimates and produce sparse models. Bien et al. (Bien 

et al. 2013) improved LASSO by adding convex constraints to estimate interactions between 

independent variables. In practice, however, hierarchical LASSO can be sensitive to the assumptions of 

strong or weak hierarchy when data has high-dimensionality. Sun and colleagues (Sun et al. 2013) 

proposed employing classification and regression tree (CART) as the initial step to screen important 

variables. Simulation studies have found that this can reduce the bias of estimates of non-zero 

coefficients. Here these two methods are combined to form a two-step strategy: tree-based screening 

coupled with hierarchical LASSO. This strategy is also compared to some single-step approaches in 

simulated datasets to shed light on choosing appropriate analytical methods given different data 

structures. 

Methods: 

The model takes the form 𝑌 = 𝛽0 + ∑ 𝛽𝑗𝑋𝑗 +
1

2
∑ Θ𝑗𝑘𝑋𝑗𝑗≠𝑘 𝑋𝑘 + 𝜀,   𝑗 𝛽0 ∈ ℝ, 𝛽 ∈ ℝ𝑝, Θ ∈ ℝ𝑝×𝑝, Θ =

Θ𝑇 , Θ𝑗𝑗 = 0. As proposed by Bien et al., strong hierarchical LASSO estimates the coefficients by solving 

the optimization problem, 𝑎𝑟𝑔𝑚𝑖𝑛𝜇,𝛽,Θ  
1

2
∑ (𝑦𝑖 − 𝜇 − 𝑥𝑖

𝑇𝛽 −
1

2
𝑥𝑖

𝑇Θ𝑥𝑖
)

2
𝑛
𝑖=1 + λ1𝑇(𝛽+ + 𝛽−) +

𝜆

2
‖Θ‖1  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  Θ = Θ𝑇 , ‖Θ𝑗‖

1
≤ (𝛽𝑗

+ + 𝛽𝑗
−), 𝛽𝑗

+ ≥ 0, 𝛽𝑗
− ≥ 0. The constraint implies that if the 

interaction term has a coefficient of non-zero, then the main effect will also be estimated as non-zero. 

The side effect is that a strong interaction term will force the model estimates on main effects to be 

large, increasing the biases. Therefore, some authors argued for weak hierarchy (Liu et al. 2014), which 

can be easily achieved by removing the symmetry constraint. 

CART is a tree-structured nonparametric method with little assumptions on data structure. Its algorithm 

recursively partitions observed data until the tree explains most of the outcome variability. The tree is 

then pruned to remove less important nodes and to generate a list of important variables. 

Before the initial tree-based screening, the sample datasets are first examined visually for distribution 

normality. Dataset 1 is log-transformed while dataset 2 is not. Then, continuous variables are 

standardized to have a mean of 0 and a standard deviation of 0.5, while binary variables are intact, as 

suggested by (Gelman 2008). I compare results from multiple methods using the single-step and two-

step strategies. In the single-step strategy, the standardized dataset are fit using ridge, LASSO, elastic-

net (EN), strong hierarchical LASSO (SHL), and weak hierarchical LASSO (WHL). In the two-step strategy, 

CART is first built to select the “important variables” and then they are used as the input for the five 

aforementioned methods. All analyses are conducted in R 3.1.3, with rpart and hierNet package. Tuning 
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parameters (i.e. lambda and alpha) are selected based on the value that minimizes the mean squared 

error from a 10-fold cross-validation. 

Results: 

SHL and WHL perform well in capturing variable interactions while fitting a relatively parsimonious 

model at the same time. Figure 1 visualizes the main effects and interactions for datasets under the 

strong and weak hierarchical assumptions. For dataset2, when the dimensionality is higher, the final 

product of SHL and WHL can have too many regressors to be easily interpreted. A comparison of one-

step versus two-step strategy is shown in Table 1. For dataset 1, the benefit of CART is outweighed by 

the side effects: the number of main effects is reduced from 5 to 3, the number of interactions is 

reduced from 2(or 3) to 1, however the MSE goes up by 26%. On the other hand, CART does benefit 

model building for dataset 2. Nine candidate variables are selected from the original 17 for the 

subsequent shrinkage methods. In the final model, the number of main effects decreases from 12 to 8, 

and the number of interaction terms is reduced from 6(or 4) to 3. More importantly, the MSE of two-

step model almost stays the same, and the difference between SHL and WHL is also minimized. As 

shown in Figure 2, this generates a more interpretable model for dataset 2, with 8 main effects and 3 

pairwise interaction terms. 

For the real world dataset, 15 out of the 28 variables were selected by the CART screening. The main 

effects and interaction terms estimated by SHL and WHL are visualized in Figure 3. The MSE are 0.206 

and 0.195 respectively. Unlike the simulated datasets, the SHL and WHL generated quite different model 

results. Under the WHL, the MDI score is negatively associated with PBDE 99, PCB 187, mom’s education 

and mom’s smoking status; and positively associated with PCB105, PCB153, PCB 156, and PCB 199. 

Conclusions: 

The results presented here demonstrate that shrinkage-based regression methods, coupled with an 

initial tree-based screening algorithm when necessary, can expand the linear regression framework to 

include non-additive interactions and produce succinct, interpretable models. In both datasets, only 

subsets of exposures are found to contribute to the variability in the outcome. Interactions between 

exposures and between exposures and confounders are also found. Based on MSE from 10-fold cross-

validation, the models that best explained both datasets are selected. Two-step strategy is only 

beneficial when the dataset has high dimensionality. When the proposed strategy is applied to the real 

world dataset, the strategy is sensitive to the strong and weak hierarchical assumption. This could be 

due to the low signal-to-noise ratio or strong non-linearity in the real world dataset. The performance 

on the real world dataset is less satisfying than the simulated datasets, thus the current methods need 

to be further improved before putting into practical use. 
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Fig.1. Wheel plot showing the main effects 
and interactions for strong and weak 
hierarchical lasso. Filled nodes represent 
nonzero main effects, edges represent 
nonzero interactions. 

Fig.3. Main effects and interactions in the real-
world dataset analyzed by the two-step 
strategy. Strong hierarchy and weak hierarchy 
yielded different model estimates. 
 

 
 
Fig.2. Main effects and interactions for 
simulated datasets generated from the two-
step strategy. For both datasets, strong and 
weak hierarchical lasso generate the same 
interaction sparsity. 

 

 
 
 
Table 1. Compare the results of five shrinkage methods: one-step v.s. two-step strategy 
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 (A) One-step strategy (B) Two-step strategy  

Methods Main effects Interactions MSE
a
 Main effects Interactions MSE ΔMSE 

Dataset 1       
Ridge All / 0.061 X5, X7, Z / 0.070 15% 
Lasso X1, X5, X7, Z / 0.059 X5, X7, Z / 0.068 15% 
EN

b
 X1, X2, X3, X5, 

X7,Z 
/ 0.057 X5, X7, Z / 0.069 22% 

SHL
c
 X1, X2, X5, X7,Z X1*X5, X1*X7 0.045 X5, X7, Z X5*Z 0.056 26% 

WHL
d
 X1, X2, X5, X7,Z X1*X5, X1*X7, 

X4*X5 
0.045 X5, X7, Z X5*Z 0.056 26% 

Dataset 2       
Ridge All / 0.134 x10, x12, x13, 

x14, x3, x6, x8, 
z2, z3 

/ 0.132 -1% 

Lasso x4, x6, x8, x10, 
x11, x14, z2, z3 

/ 0.132 x10, x12, x14, 
x3, x6, x8, z2, 
z3 

/ 0.131 -1% 

EN x4, x6, x8, x10, 
x11, x14, z2, z3 

/ 0.133 x10, x14, x3, 
x6, x8, z2, z3 

/ 0.134 0% 

SHL x2, x4, x5, x6, 
x7, x8, x10, x11, 
x12, x14, z2, z3  

x10*z2, x12*z3, 
x7*z3, 
x6*z3,x5*z3, x2*z3 

0.116 x10, x12, x14, 
x3, x6, x8, z2, 
z3 

x10*z2,  
x6*z3, x12*z3 

0.117 1% 

WHL x2, x4, x5, x6, 
x8, x10, x11, 
x12, x14, z2, z3  

x10*z2, x12*z3, 
x7*z3, x2*z3 

0.118 x10, x12, x14, 
x3, x6, x8, z2, 
z3 

x10*z2,  
x6*z3, x12*z3 

0.120 1% 

a. Mean square error of the model selected from 10-fold cross validation; b. Elastic-net; c. 
Strong hierarchical lasso; d. Weak hierarchical lasso 

 
Table 2. Main effects and interactions for real-world datasets generated from the two-step 
strategy. 

 Main 
effects 

Nonachlor Oxychlor PBDE 
153 

PCB 
153 

PCB 
156 

PCB 
187 

PCB 
199 

PCB 
74 

Mom 
_educ 

Mom 
_smoke 

PBDE 
99 

-0.035 0 0 -0.014 0 0 0 0 0 0 0 

PCB 
105 

0.022 0 -0.011 0 0 0 0 0 0 0 0 

PCB 
153 

0.002 0 0 0 -0.002 0 0 0 0 0 0 

PCB 
156 

0.007 0 0 0 0 -0.007 0 0 0 0.007 0 

PCB 
187 

-0.011 0 0 0 0 0 0.011 0 0 0 0 

PCB 
199 

0.027 -0.010 0 0 0 0 0 0 0 0 0.003 

Mom_ 
educ 

-0.100 0 0 0 0 0.007 0 0 0.031 -0.024 0 

Mom_ 
smoke 

-0.008 0.004 0 0 0 0 0 0.003 0 0 0 
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9. A Two Stage Approach to Analysis of Health Effects of Environmental 

Chemical Mixtures: Informed Sparse Principal Component Analysis 

Followed by Segmented Regression 
Presenting Author:  Roman Jandarov 

Organization: University of Cincinnati 

Contributing Authors:  Roman A. Jandarov, Liang Niu, and Susan M. Pinney 

Abstract:  

Analysis of health effects of exposure to real-world environmental chemical mixtures poses various 

challenging problems to researchers. These problems are often related to dimensionality of the 

potential exposures of interest, the complex correlation structure in the exposures, high uncertainty in 

the measurements of the exposures (e.g. high number of measurements close to limit of detection 

(LOD) of the exposure), possible non-linear and interacting relationship between the exposures and the 

health endpoints that may depend on the magnitude of the exposure mixtures, the presence of 

continuous and categorical confounders, and difficulty of interpreting the result of statistical models. In 

an attempt to resolve these issues, we propose a two-stage approach that can be applied to the analysis 

of health effects associated with environmental chemical mixtures. In the first stage of our approach, we 

propose to reduce the dimensionality of the exposure variables using a novel informed sparse principal 

components analysis (PCA). In the second stage of the approach, we propose to analyze the effects of 

these lower dimensional exposure variables (principal scores) using a segmented linear regression 

analysis.  

In general, PCA allows extracting a small number of important variables from a higher dimensional set of 

exposures that explain most of the variability in the data. These important variables are called PCA 

scores. In PCA, the PCA scores are calculated by projecting the original exposures onto the vectors called 

PCA loadings. Introducing sparcity to PCA scores makes the loading vectors sparse and sparcity helps to 

increase interpretability of the scores. In traditional sparse PCA, sparsity of the loadings is controlled by 

a parameterized penalty function that adds a penalty to the loadings in the optimization problem using 

the absolute values of the loadings. This penalty function is not informed by prior information about 

how/if the original exposures are reliable. In our informed sparse principal component analysis, in 

contrast to the traditional sparse PCA, we propose to penalize the PCA loadings not just by their 

absolute values, but by also adding weights to the algorithm to inform the penalty function about which 

exposures are more reliable than the others. These weights can be obtained by experts’ knowledge on 

how exposures are measured and which measurements tend to be more prone to measurement error. 

For example, exposure weights can be calculated as a proportion of measurements close to the LOD for 

each exposure variable, or those where the coefficient of variation for the quality control samples is 

large. By incorporating information about reliability of the exposures, the informed sparse PCA 

therefore can potentially eliminate variables that do not contribute to explaining the total variability of 
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the data and unreliable variables; and construct PCA scores that are sparse, interpretable and more 

reliable.  

There are a huge number of methods to model a potential non-linear relationship between the outcome 

and the predictors. While some of these methods may result in very accurate predictions of the 

outcome (e.g. random forests, models with splines, deep artificial neural networks, etc.), interpreting 

the effects of the predictors on the outcome in these methods is always very challenging. Keeping in 

mind that interpretability of the estimated effects from the health models is crucial in the analysis of 

exposures to environmental chemical mixtures; we propose to analyze the effects of PCA scores 

obtained from informed sparse PCA using a simple segmented linear regression. In segmented linear 

regression with confounders, we obtain estimates for the slopes by allowing for possible multiple 

breakpoints in the relationship between principal scores and the health endpoint. The result of the 

model is easy to interpret in order to characterize the effects of chemical exposures. In this model, we 

do not include interaction terms between the principal scores since it is expected that correlations 

between these variables is low because of the first stage of the approach.  

Therefore, we note that in the first stage of our two-stage approach, by utilizing informed sparse PCA, 

we attempt to resolve the issues with dimensionality of the exposures, the complex correlation 

structure, and high uncertainty in the measurements of the exposures. In the second stage of the 

approach, we model the possible non-linear relationship between the exposures and the health 

endpoints by also accounting for confounders using a very interpretable segmented linear model.  

In our draft, we plan to demonstrate the utility of the two-stage approach in simulated data and in an 

application to two data sets made available by the NIEHS workshop. 
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In this document, we summarize our preliminary application of the two stage analysis approach to simulated datasets available at the NIEHS 

workshop’s website. We omit the details of the optimization problem and algorithms that are necessary to conduct informed sparse principal 

component analysis (IsPCA) in the first stage. A more detailed version of this document (with answers to summary questions listed on the 

website) can be found at https://www.dropbox.com/s/0bkl6g89tcmc9o7/applicationIsPCAsummary.pdf?dl=0 

Analysis of Data Set 1: In the first stage of our approach, we apply informed principal component analysis to data on exposure variables X1 - 

X7. For informed sparse PCA, we assume that all weights for the exposure variables are equal based on the assumption that there is not mis-

measurement in these data. 

Table 1 presents the loadings for the first four principal components obtained from IsPCA. Using this table, it is clear that the first principal 

component score (PC1) is a mixture of the exposures X1, X2 and X3; the second principal component score (PC2) is primarily a mixture of 

the exposures X5 and X6; the third principal component score (PC3) is a mostly related to X4; and the fourth principal component score (PC4) 

has its mass on X7. 

In the second stage of the approach, we want to study the health effect of principal scores calculated in the first step. As described in the 

abstract, we use segmented linear regression to model the relationship between Y and PC1, PC2, PC4 and PC4 given the confounding variable 

Z: 

Y~PC1+PC2+PC3+PC4+Z + possible interactions between Z and PCs 

In our final model, we included interactions PC1*Z and PC2*Z. For variables PC1-PC4, we assumed the possibility of break points to capture 

the potential non-linear relationship between Y and these variables. 

Estimates of the slopes with corresponding confidence intervals for the final model are given in Table 2. Based on these slopes and the 

estimated break points, Figure 1 shows the effects of principal scores on Y. Table 2 and Figure 1 can easily be used to understand the ranges 

where principal scores and Y are significantly associated: for example, we see that PC1 is associated with Y after the breakpoint, PC2 is 

associated negatively with Y only in the middle range between the breakpoints, PC3 is associated with Y between the breakpoints, and PC4 is 

associated with Y after the first breakpoint. In the final model, Z and interaction of Z with PC2 (PC2*Z) were also significantly associated 

with Y (with p.values<0.001). The adjusted R^2 for this model was around 0.91. 

Analysis of Data Set 2: From the boxplots of the variables, we see that different exposures X1-X14 have different ranges and values. Since 

information on LODs for these variables are not given in this exercise, based on our domain expert, we calculated weights for the exposure 

variables based on their ranges. These weights were 0.13, 0.09, 0.06, 0.07, 0.06, 0.07, 0.20, 0.08, 0.27, 0.10, 0.11, 0.80, 0.40, and 0.16. Using 

these weights, we can order the exposures by assumed reliability as follows: X5, X3, X4, X6, X8, X2, X10, X11, X1, X14, X7, X9, X13, and 

X12. Here, for example, we are assuming that X12 and X13 are of the lowest quality. In general, we can construct weights using prior 

information on LODs of the exposures and/or other information. 

In the first stage of our analysis, we apply IsPCA to exposure data using the weights from above. The resulting loading vectors for the first 5 

principal components are given in Table 3. We note here that these loadings are different from what we expect to get from the traditional 

sparse PCA since traditional PCA assumes equal weights for all variables. In Table 3, we see that the least reliable variables X12 and X13 

ended up being eliminated by the algorithm. From Table 3, we can interpret PC1 as a mixture of X3, X4 and X5, PC2 as a mixture of X6 and 

X8, PC3 as a mixture of X8, X10 and X11, PC4 as a mixture of X3,X4, X5, X8 and X14 and PC5 as a mixture of X1 and X2. 

In the second stage, we used segmented regression model to investigate the effects of PC1-PC5 on Y given the confounder variables Z1, Z2, 

and Z3: 

Y~PC1+PC2+PC3+PC4+PC5+Zs + possible interactions between Zs and PCs 

Again, we assumed the possible non-linearity between the scores and Y. In our final model, the results showed that only PC1 had a broken- 

line relationship with Y (as seen in Figure 2), while other principal scores didn’t show any evidence of non-linearity. The association between 

PC1 was not significant in any of the segments. At the 0.05 level, the following main effects of principal scores were statistically significant: 

PC3 (estimate of the slope: 0.068514, p.value = 0.01481), PC5 (estimate of the slope: 0.176889, p.value < 0.0001). Additionally, confounders 

Z3 (estimate of the slope: -0.82947, p.value = 0.0001), Z2 (estimate of the slope: - 0.004907, p.value = 0 0.00664) and interaction term 

PC5*Z3 (estimate of the slope: -0.2082, p.value < 0.0001) were also statistically significantly associated with Y. The adjusted R^2 for this 

model was around 0.51.  
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Table 1: IsPCA loadings for first 4 components 

 PC1 PC2 PC3 PC4 

X1 0.56 0 0.15 0.26 

X2 0.57 0 0.19 0.24 

X3 0.6 0 0.17 0.26 

X4 0 -0.1 0.95 -0 

X5 0 0.71 0 0 

X6 0 0.71 0 0 

X7 0 0 0 0.9 

 

Table 2: Estimated slopes and confidence intervals 

$PC1    $PC3    

 Est. CI(95%).l CI(95%).u  Est. CI(95%).l CI(95%).u 

slope1 -8.24 -22.27 5.80 slope1 7.22 -4.95 19.38 

slope2 2.01 0.94 3.08 slope2 1.22 0.78 1.65 

    slope3 -54.06 -233.70 125.60 

$PC2        

 Est. CI(95%).l CI(95%).u $PC4    

slope1 -37.86 -161.90 86.14  Est. CI(95%).l CI(95%).u 

slope2 -3.25 -3.71 -2.78 slope1 25.99 -23.39 75.37 

slope3 -0.54 -1.80 0.71 slope2 11.92 7.50 16.34 

    slope3 3.06 2.68 3.44 

 

Table 3: IsPCA loadings for first 5 components 

 PC1 PC2 PC3 PC4 PC5 

X1 0 0 0 0 0.6 

X2 0 0 0 0 0.8 

X3 0.58 0 0 0.44 0 

X4 0.52 0.01 0 0.47 0 

X5 0.62 0 0 0.4 0 

X6 0 0.86 0 0.05 0 

X7 0 0 0 0 0 

X8 0.09 0.51 0.11 0.38 0 

X9 0 0 0 0 0 

X10 0 0 0.77 0 0 

X11 0 0 0.63 0.06 0 

X12 0 0 0 0 0 

X13 0 0 0 0 0 

X14 0 0 0 0.53 0 

 

 
Figure 1: Effects of principal scores 

 
Figure 2: Effects of principal scores 1 
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10. Direct Assessment of Public Health Impacts of Exposure Mixtures:  A 

Bayesian G-Formula Approach 
Presenting Author:  Alexander Keil 

Organization: University of North Carolina, Chapel Hill 

Contributing Authors:  Alexander P. Keil, Jessie P. Buckley, and Jessie K. Edwards 

Abstract:  

One goal of assessing complex mixtures is to identify interventions or policy recommendations to 

improve public health. This approach fits naturally in environmental epidemiology as much of our work 

seeks to provide evidence for regulation of hazardous agents. Furthermore, the correlated nature of 

environmental exposures has important implications for what and how to intervene. Here, we present 

an approach to estimate the health effects of interventions or policy changes related to exposures 

occurring in mixtures. 

We outline a Bayesian approach to the parametric g-formula to estimate the effects of interventions on 

a complex exposure mixture. The quantity of interest is the population mean of Y, referred to as E(Y), 

under various independent and joint interventions on exposures in the simulated datasets. We use a 

linear model for Y including all Xs, Zs, and their two-way interactions, and coefficients are shrunk 

towards the null value using a Bayesian LASSO. Using this model, we estimated the posterior predictive 

distributions of Y, which correspond to the population distributions of Y under each intervention. We 

implemented our approach in STAN v2.6.0. 

In the Table, we summarize a set of policy-relevant questions regarding independent and joint 

interventions. We focus on two types of interventions to reduce exposure: 1) an intervention to reduce 

only the highest exposures and 2) an intervention that reduces all exposures. We implement 

intervention 1 by capping exposure at the 75th percentile (Figures 1a and 2a) and intervention 2 by 

reducing all exposures by half (Figures 1b and 2b). We estimate the effects of individual interventions on 

each exposure as well as joint interventions on all exposures or sets of exposures with high correlations 

that may indicate a common source (dataset 1: X1, X2, X3; dataset 2: X3, X4, X5). Each effect, referred to 

as Diff(Y), is defined as the difference between E(Y) under the intervention and E(Y) under no 

intervention. To compare the dose-response functions for key interventions, we plot E(Y) over 

increasingly extreme downward shifts of the exposure distribution (Figure 1c and 2c). We assume that 

exposures are reported as measured in dataset 1 and that exposures were natural-log transformed in 

dataset 2. 

In dataset 1, E(Y) under no intervention was 23.3. An intervention to shift the distribution of X7 had the 

strongest effect on Y of any single X intervention (Diff(Y) if the distribution of X7 was halved: -2.5; 95% 

CI: -2.7, -2.3; Figure 1a,b). The effect of a joint intervention to halve the distributions of X1, X2, and X3 

reduced E(Y) to 19.8 (Diff(Y): -3.5; 95% CI: -4.1, -2.9); indicating that effects of X1, X2, and X3 were 

approximately additive. Similarly, as exposure distributions were incrementally reduced, a joint 
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intervention on X1, X2, and X3 reduced E(Y) more than decreasing all Xs (Figure 1c). In dataset 2, E(Y) 

under no intervention was 3.9. An intervention to shift the distribution of X13 had the strongest effect 

on Y of any single X intervention, though the estimate was imprecise (Diff(Y) if the distribution of X13 

was halved: -0.18; 95% CI: -0.62, 0.27; Figure 2a,b). Under a joint intervention to halve the distributions 

of X3, X4, and X5, E(Y) was 3.9 (Diff(Y): -0.02; 95% CI: -0.08, 0.04), suggesting that an intervention on a 

source of X3, X4, and X5 may not be effective in reducing Y. Intervening only on X4 reduced E(Y) more 

than a joint intervention on all Xs (Figure 2c).  

These results suggest that interventions should carefully target specific exposures or exposure 

combinations. Our approach offers a method for determining which exposures should be targets of 

interventions. For example, in dataset 2, we estimated that an intervention on a hypothetical source of 

three highly correlated exposures may not be as effective as intervening on a specific single component 

of the mixture. Furthermore, shifting the distribution of X was generally more effective than capping X at 

the 75th percentile in these datasets, which has useful policy implications for determining how to 

intervene. Both of our intervention types correspond to potential realistic scenarios. For example, in 

occupational settings some workers might be monitored for exposure and pulled out of exposed jobs 

when reaching a certain exposure cap. Similarly, in environmental settings, use of sulfur dioxide 

scrubbers may proportionately reduce sulfur dioxide exposures in all coal-fired power plants in which 

they are implemented. In real life applications, prior knowledge regarding exposures, their sources, and 

feasible exposure reduction approaches could be synthesized to test additional targeted interventions. 

Our approach dovetails with other Bayesian methods for complex exposure mixtures. Consequently, it 

could be used to compare the magnitudes of main-effect and product term parameters, as well as joint 

dose-response functions, rather than utilizing the posterior predictive distribution. Similarly, precision in 

our estimates may be improved by using stronger priors, which may be informed by prior research or 

results from hierarchical models. Our novel extension of the more traditional Bayesian approach, in 

which we estimate the effects of hypothetical interventions, may strengthen traditional risk assessment 

as it allows for direct comparison of policy alternatives and can accommodate cost benefit analyses. In a 

real world setting, we can use prior knowledge on costs and feasibility to identify potential interventions 

or policy alternatives to regulate exposures. We can then compare health outcomes under each scenario 

to inform decisions about public health policy. 
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Table.	
  Examples	
  of	
  interventions	
  to	
  assess	
  independent	
  and	
  joint	
  effects	
  of	
  exposures	
  (X)	
  on	
  outcome	
  (Y)	
  
a	
  If	
  X>κ,	
  set	
  X	
  to	
  κ,	
  where	
  κ	
  is	
  a	
  quantile	
  of	
  the	
  exposure	
  distribution,	
  an	
  actual	
  or	
  potential	
  standard,	
  or	
  other	
  meaningful	
  level.	
  	
  
b	
  Shift	
  the	
  entire	
  exposure	
  distribution	
  of	
  X	
  (e.g.,	
  divide	
  each	
  observed	
  X	
  value	
  by	
  δ).	
  	
  	
  
c	
  Posterior	
  distributions	
  of	
  coefficients	
  estimated	
  in	
  the	
  outcome	
  model.	
  
	
  
	
   	
  
	
   	
  

Study	
  question	
   aCap
Intervention	
  type	
   Workshop

question	
  
	
  

Figure	
  
	
   Shiftb	
  

Independent	
  effects	
   	
   	
   	
   	
  
How	
  much	
  can	
  we	
  reduce	
  Y	
  by	
  limiting	
  exposure	
  to	
  each	
  X?	
  	
   Cap	
  each	
  X	
  at	
  κ	
   Divide	
  each	
  X	
  by	
  δ	
   1,	
  2	
   1/3	
  
What	
  is	
  the	
  incremental	
  reduction	
  in	
  Y	
  associated	
  with	
  lower	
   Cap	
  each	
  X	
  at	
  a	
   Divide	
  each	
  X	
  by	
  a	
   1,	
  2	
   2/4	
  
exposure	
  limits	
  on	
  X?	
  	
   range	
  of	
  κ	
   range	
  of	
  δ	
  

Joint	
  effects	
   	
   	
   	
   	
  
How	
  much	
  can	
  we	
  reduce	
  Y	
  by	
  limiting	
  exposure	
  limits	
  to	
  all	
  X?	
   Cap	
  all	
  X	
  at	
  κ	
   Divide	
  all	
  X	
  by	
  δ	
   3,	
  4	
   2/4	
  
What	
  is	
  the	
  incremental	
  reduction	
  in	
  Y	
  associated	
  with	
  lower	
   Cap	
  all	
  X	
  at	
  a	
   Divide	
  all	
  X	
  by	
  a	
   3,	
  5	
   2/4	
  
exposure	
  limits	
  on	
  all	
  X?	
  	
   range	
  of	
  κ	
   range	
  of	
  δ	
  

How	
  much	
  can	
  we	
  reduce	
  Y	
  by	
  limiting	
  exposure	
  to	
  the	
  p	
  X	
  that	
   Cap	
  p	
  X	
  at	
  κ	
   Divide	
  p	
  X	
  by	
  δ	
   3	
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Figure	
  1.	
  Effects	
  of	
  single	
  and	
  joint	
  interventions	
  on	
  the	
  mean	
  outcome	
  (E(Y))	
  in	
  dataset	
  1.	
  The	
  effect,	
  Diff(Y)	
  is	
  defined	
  
as	
  the	
  difference	
  between	
  E(Y)	
  under	
  the	
  intervention	
  and	
  E(Y)	
  under	
  no	
  intervention.	
  The	
  left	
  panels	
  plot	
  the	
  change	
  
in	
  E(Y)	
  following	
  interventions	
  to	
  A)	
  cap	
  exposures	
  at	
  the	
  75th	
  percentile	
  or	
  B)	
  reduce	
  all	
  exposures	
  by	
  half.	
  Panel	
  C	
  
plots	
  E(Y)	
  over	
  increasingly	
  stringent	
  reductions	
  in	
  exposures.	
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Figure	
  2.	
  Effects	
  of	
  single	
  and	
  joint	
  interventions	
  on	
  the	
  mean	
  outcome	
  (E(Y))	
  in	
  dataset	
  2.	
  All	
  panels	
  correspond	
  to	
  
the	
  same	
  interventions	
  as	
  given	
  in	
  Figure	
  1.	
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11. Do Your Exposures Need Supervision? 
Presenting Author:  Jenna Krall 

Organization: Emory University 

Contributing Authors:  Jenna R. Krall, Howard H. Chang, Katherine M. Gass, W. Michael Caudle, and 

Matthew J. Strickland 

Abstract:  

Background: Determining the environmental exposures most associated with a health outcome is 

challenging when exposures are highly correlated. Statistical and epidemiologic methods, with various 

strengths and limitations, have been introduced to estimate such associations. Here we applied two 

methods, with different advantages and disadvantages, to help reach a consensus about the presence 

and/or absence of associations. Specifically, we used both an unsupervised approach, which groups 

exposures irrespective of the outcome, and a supervised approach, which uses the outcome to 

determine the most important exposures. By comparing the two sets of results, we can estimate 

associations between groups of exposures and the outcome and also determine which exposures within 

the groups might be most important. 

Methods: Our unsupervised approach used principal component analysis (PCA) to reduce 

multicollinearity and to estimate joint associations between combined exposures and the outcome. We 

selected principal components (PCs) that explained most of the variability in the exposure data and 

applied varimax rotation to improve interpretability. We estimated associations between the PC scores, 

which are combinations of original exposures, and the outcome using linear regression with and without 

adjustment for confounding. The PCA approach is well suited for highly correlated exposures, but does 

not separate out the most important exposures within a group, and the regression coefficients for the 

new exposures can be difficult to interpret. We compared the PCA approach to using the exposures 

directly in both unadjusted linear models and linear models adjusting for other exposures and potential 

confounders.  

We also determined the exposures most associated with the outcome using classification and regression 

trees (C&RT). C&RT is a supervised form of hierarchical clustering where the data are successively split 

into dichotomous groups, such that each resulting group contains increasingly similar responses for the 

outcome. Each binary split is determined by the value of the exposure that best explains the outcome 

(based on analysis of variance) for that partition of the data. After the full (saturated) tree is grown, a 

pruning rule (based on cross-validation) is applied to select the final tree, which balances the tradeoff 

between parsimony and minimizing cross-validation error. To control for confounding, we applied C&RT 

to the residuals obtained by regressing out the effects of the confounders from both the outcome and 

exposure variables.  
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Results: For the first simulated dataset, four PCs explained most (88.9%) of the variability in the 

exposure data. The varimax-rotated loadings had good separation (Figure 1a), with rotated PC 1 (rotPC1) 

primarily representing X1-X3, rotPC2 primarily representing X5-X6, rotPC3 primarily representing X7, and 

rotPC4 primarily representing X4. The regression results for simulated dataset 1 are shown in Figure 1b. 

Using the PCA approach, we found that the groups corresponding to rotPC1-rotPC3 were significantly 

associated with the outcome in both unadjusted and adjusted models. While we did not find that the 

rotPC associated with X4 was associated with Y, X4 was negatively associated with the outcome in an 

adjusted model and the association was statistically significant. We also applied C&RT to simulated 

dataset 1 to identify the exposures most associated with Y. Using a pruned tree on the exposures and 

outcome (on the residuals (r) with the effect of Z regressed out), we identified X1, X5, and X7 as the 

most important exposures. These three exposures correspond to exposures grouped in rotPC1-rotPC3. 

Figure 2 shows the pruned regression tree as well as the range of exposure residual values for four 

selected terminal nodes of the tree. 

We identified six PCs in simulated dataset 2, which explained 88.7% of the variability in the exposure 

data. The rotPCs generally categorized exposures as: rotPC1: X3-X5, X8, X14,  rotPC2: X12-X13, rotPC3: 

X10-X11, rotPC4: X6-X7, X9, rotPC5: X2, rotPC6: X1 (Figure 3a). We found that rotPC1-rotPC4 and rotPC6 

were significantly positively associated with the outcome, after controlling for all the rotPCs and 

confounders (Figure 3b). The adjusted association for rotPC5 was positive, but not statistically 

significant. Using C&RT, we did not find that any exposures were predictive of the outcome. Once we 

regressed out the effect of the confounders, the exposures explained very little of the outcome. 

Because the exposures in the real-world dataset were right-skewed, we logged the exposure data for 

both the PCA approach and regression analysis. In the PCA analysis, we identified four PCs, which 

explained 78.9% of the variability in the exposures (Figure 4a). The second rotPC consisted primarily of 

PCBs 74, 99, 105, 118, and 138/158 and some PP-DDE, and rotPC1 consisted primarily of the remaining 

PCBs and most of the remaining PP-DDE. All of the PBDEs primarily included in rotPC3 and rotPC4 

consisted mostly of Hexachlorobenzene, Trans-Nonachlor, and Oxychlordane. In this dataset, we found 

substantial evidence of confounding. After controlling for confounders, none of the rotPCs were 

significantly associated with Mental Development Index (MDI) (Figure 4b). C&RT did not find evidence 

that any one exposure was predictive of MDI. 

Conclusion: We found that when exposures are all highly correlated, PCA can be used to reduce 

multicollinearity in linear models and determine those groups of exposures most associated with an 

outcome. C&RT does well in identifying important exposures when confounding is not severe, however 

when a confounder is very correlated with several exposures and the outcome, it can be difficult to 

distinguish the effect of those exposures from the effect of the confounder.  We demonstrated that 

pairing an unsupervised approach, PCA, and a supervised approach, C&RT, can lead to better intuition 

about which exposures are most associated with an outcome. A lack of consistency across these 

methods highlights the uncertainty in the results and demonstrates how conclusions can vary according 

to the statistical model chosen for analysis.  
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Do your exposures need supervision? 

Jenna R. Krall, Howard H. Chang, Katherine M. Gass, W. Michael Caudle, 

Matthew J. Strickland 

Figure 1: Results for simulated dataset 1 using the PCA approach 

(a) Varimax-rotated PC loadings (b) Estimated regression coefficients by rotPC group 

 

Figure 2: Pruned regression tree using C&RT for simulated dataset 1. For four selected terminal nodes, 

we show the distribution of residuals for the exposure variables that define that terminal node. 
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Figure 3: Results for simulated dataset 2 using the PCA approach 

(a) Varimax-rotated PC loadings 

 

(b) Estimated regression coefficients by rotPC group 

 

Figure 4: Results for the real-world dataset using the PCA approach 

(a) Varimax-rotated PC loadings 

 

(b) Estimated regression coefficients by rotPC group 
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12. Principal Component Analysis: An Application for Understanding 

Health Effects of Environmental Chemical Mixture Exposures 
Presenting Author:  Cristina Murray-Krezan 

Organization: University of New Mexico 

Contributing Authors:  Johnnye Lewis, Curtis Miller, and Cristina Murray-Krezan 

Abstract:  

Data Set 1 

We approached the analysis of Data Set 1 as a dose-response function, where the dependent variable Y 

was considered to be some outcome measure of exposure, X1-X7 were assumed to be measurements of 

individual chemical exposure, and Z was a potentially confounding dichotomous variable. 

Statistical Analysis: All continuous independent variables (X1-X7) were highly skewed and the dependent 

variable Y was somewhat skewed. The logs of X1-X7 were approximately normally distributed and were 

used for all analyses. Many variables were highly correlated to each other, in particular X1, X2, and X3 

(all r≥0.86) and X5 and X6 (r=0.70), indicating potential joint-exposure effects. We implemented two 

regression approaches, both using principal component analysis (PCA). We used model selection 

techniques based on AIC to guide selection of significant interactions. After reducing the interactions, 

we determined whether any main effects not contributing to an interaction effect could be eliminated. 

Method 1: In effort to reduce the data, we performed one PCA on all seven log-transformed X variables 

to yield the principal component (PC) scores PC1-PC7. We selected PC1-PC4 since they accounted for 

>90% of the common variance in the independent variables. The first three PCs were dominated by 

unique sets of variables (PC1 by X1, X2, and X3; PC2 by X5, X6; and PC3 and PC4 by both X4 and X7). A 

regression model was fitted to Y with independent variables Z, PC1, PC2, PC3, PC4, and the interactions 

between Z and the PCs. 

Method 2: We performed PCA on X1-X3 and separately on X5-X6, using PC11, PC12, PC13, PC21, and 

PC22 for linear regression analysis rather than the original variables to reduce the effects of 

multicollinearity. We linearly regressed Y onto the following variables: Z, PC11, PC12, PC13, log X4, PC21, 

PC22, log X7; all second order interactions with Z; interactions between log X4, log X7, and the PCs; and 

select third order interactions. 

Results: We found both methods had similar results. Figures 1a and 1b show how well our models fit the 

observed data and report fit statistics for model comparison. Note that the final model for Method 2 

contained 14 independent variables compared to 8 for Method 1. We present Method 2 results since 

the interpretation of the PCs is more straightforward given that each is comprised only of the correlated 

variables. The final regression model is reported in Equation 1. The residuals from the model were 

normally distributed and when plotted against the predicted Yˆ, showed random distribution and had 

constant variance. 
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PC11 interacts with covariate Z indicating that Y decreases as PC11 increases in the presence of Z 

(P<0.0001). Z also interacts with PC12 and PC21 with a higher Y as PC12 and PC21 increase in the 

presence of Z. The interaction between Z and PC12 results in the largest change in Y out of all the 

regressors. Log X7 interacts significantly with Log X4, PC11 (negative effects on Y), and PC21 (positive 

effect on Y). Log X4 interacts significantly with PC21 (negative effect). PC22 is significant as a main effect 

only and is negatively related to Y with the second largest influence on Y of all the regressors. PC31 is 

not significant in this model. 

Data Set 2 

We developed a dose-response function for Data Set 2, where the dependent variable Y was considered 

to be some outcome measure of exposure, X1-X14 were assumed to be measurements of individual 

chemical exposure, Z1 and Z2 were continuous potentially confounding variables, and Z3 was a 

dichotomous potentially confounding variable. 

Statistical Analysis: All variables were normally distributed. Correlation analysis yielded high correlations 

among many variables, especially between (X3, X4, X5, X8), (X7, X9), (X10, X11), and (X12, X13), all with 

r>0.70, indicating joint-exposure effects. Analysis was similar to those described for Data Set 1, including 

model selection. 

Method 1: A single PCA was performed on the 14 X variables. PC1-PC7 were retained as independent 

variables for the regression since they accounted for >90% of the variability. PC1 was dominated by X3- 

X6, X8, X11, and X14; PC2 by X1, X2, X7, X9, X11, and X13; PC3 and PC4 by X1, X2, X10, X11; PC5 by X1, 

X2; PC6 by X6; and PC7 by X6, X7, and X14. We regressed Y onto Z1-Z3, PC1-PC7, and all second-order 

interactions between the Z covariates and X variables. 

Method 2: PCA consisted of four PCAs on the sets of correlated variables yielding PC11-PC14, PC21-

PC22, PC31-PC32, and PC41-PC42. We regressed Y onto Z1-Z3, PC11-PC14, PC21-PC22, PC31-PC32, 

PC41-PC42, X1, X2, X6, X14, all second order interactions between the Zs, first-order PCs, and remaining 

Xs; and select three-way interactions. 

Results: We found both methods had very similar results. Figures 2a and 2b show how well our models 

fit the observed data and report fit statistics for model comparison. Note that the final models for both 

methods had the same number of independent variables (12). The PCs from Method 1 were dominated 

by many variables making this model especially difficult to interpret. Instead, we present the results 

from Method 2, given by the dose-response model in Equation 2. The residuals were normally 

distributed and had constant variance. 

We found that covariate Z1 was not significant. Z2 interacted significantly with PC31 (positive effect on 

Y), and X14 (negative effect); Z3 interacted significantly with X2, PC11, and PC41 (all negative effects on 

Y in the presence of Z3). In fact, Z3 PC41 had at least 3 times the effect on Y that any other variable had 

indicating that those with a positive Z3 and higher values of X12 and X13 had significantly decreased Y 

values. 
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Discussion: 

Principal component regression is often used to isolate variance contributed by highly correlated 

variables so that multicollinearity is minimized in the regression model since PCs obtained from the 

same analysis are orthogonal and hence uncorrelated with each other. Our two methods were similar 

and fit the observed data reasonably well. More work needs to be done to interpret the contributions of 

the PCs and how they account for the variance in Y. 

  

44



Data Set 1 

  
Figure 1(a). Observed Y vs. Predicted Y from the two methods with linear regression lines for Y 
regressed on Ŷ .  
Method 1: R2 = 0.911, F=628.79, RMSE =3.26 
Method 2: R2 = 0.941, F=554.20, RMSE = 2.64 

 

Figure 1(b). Distributions of Ŷ from Methods 1 and 2, and distribution of 
observed Y. 
Kolmogorov-Smirnov test for equal distributions (Methods 1 and 2): p = 
0.9022 

 

Dose-Response Model 

11 12 4 21 22 7

11 12 21

11 7 21 4 21 7 4 7

18.77 9.28* 2.31* 0.98* 1.14*log 3.08* 2.54* 3.61*log
2.67* 3.26* 0.54*
0.63* log 0.90* log 0.51* log 0.68*log log

Y Z PC PC X PC PC X
Z PC Z PC Z PC
PC X PC X PC X X X

= + − + − + − +
− × + × + ×
− × × − × + × − ×

 (Eq. 1) 
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Data Set 2 

  
Figure 2(a). Observed Y vs. Predicted Y from the two methods with linear regression lines for Y 
regressed on Ŷ . 
Method 1: R2 = 0.558, F=628.66, RMSE = 0.434 
Method 2: R2 = 0.558, F=629.30, RMSE = 0.434 

 

Figure 2(b). Distributions of Ŷ from Methods 1 and 2, and distribution of 
observed Y. 
Kolmogorov-Smirnov test for equal distributions (Methods 1 and 2): p > 0.99 

 

Dose-Response Model 

2 3 2 11 31 41 14

2 31 2 14 3 2 3 11 3 41

3.99 0.0086* 0.88* 0.097* 0.065* 0.0059* 0.33* 0.17*
0.0034* 0.0028* 0.14* 0.055* 0.42*

Y Z Z X PC PC PC X
Z PC Z X Z X Z PC Z PC

= + − + + − + +
+ × − × − × − × − ×

 (Eq. 2) 
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13. Interpretation Without Causation: A Data Analysis at the 

Intersection of Statistics and Epidemiology 
Presenting Author:  Emily Mitchell 

Organization: National Institute of Child Health and Human Development, National Institutes of Health 

Contributing Authors:  Emily M. Mitchell, Neil J. Perkins, Germaine M. Buck Louis, and Enrique F. 

Schisterman 

Abstract:  

Background 

Assessing health effects of environmental chemical mixtures is a common challenge in epidemiological 

studies and is particularly relevant for risk assessment. Generally, prediction modeling is more 

straightforward than etiologic investigation, which requires a nuanced blending of epidemiologic and 

statistical methods. Statistical techniques estimate exposure effects under the assumption of a correct 

model. Causal diagrams explicitly defining the structure of exposure effects, even highly correlated 

exposures, is a much better tool than traditional forward or backward variable selection for etiologic 

investigation. A priori knowledge here is limited to the stated exposures of interest and potential 

confounders for both datasets. In the absence of a priori knowledge of the underlying relations, we 

ascertain these relations through observed associations. 

Data Set 1 

This dataset contains 7 exposure variables (X1 - X7), a single binary confounder (Z) and a continuous 

outcome (Y). Initial investigation into the contribution of Z on Y suggested that Y was likely a mixture of 

normal distributions, stratified by levels of Z (Figure 1). Each of the exposures was log-transformed for 

normality prior to analysis. While log-transformation on skewed independent predictors is not always 

necessary, additional investigation suggested that the relationship between the exposures and the 

outcome was linear on the log-scale of the exposures, thus justifying the transformation (Figure 2). 

Nearly all of the exposures (except X4) appeared to contribute to the distribution of Y. The marginal 

association between several of the exposures on Y was different among the levels of Z (Figure 2), 

indicating a statistical interaction and effect modification between the exposure and Z.  

Several groups of exposures were highly correlated, suggesting a joint mode of exposure in 

environmental exposures or a common ancestor. For instance, pairwise correlations between log(X1), 

log(X2), and log(X3) exceeded 0.85. Without a specific etiological question, we performed principal 

components analysis (PCA) on these variables for inclusion in a regression model. This method can be 

viewed as a variation on the additivity assumption of chemical mixtures. Additional analysis revealed a 

potential interaction between log(X5) and log(X6), due to strong association seen between the weighted 

sum as well as the weighted difference of these variables on the outcome. 
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The final model relating the joint distribution of the exposure to the outcome was defined as a linear 

regression model with parameter estimates given in Table 1. The contributions of log(X1), log(X2), and 

log(X3) were included as PC1, a weighted sum based on the first principal component. Interactions 

between PC1 and Z, and between log(X5) and log(X6), were also included. The AIC for our proposed 

model was 2471, whereas the AIC under a model containing all exposures (log-transformed) and Z was 

2542, indicating that our proposed model provides a better fit to the data. 

Data Set 2 

A multiple linear regression relating all individual exposures (X) and the confounders (Z) to the outcome 

revealed few significant associations, likely due to highly-correlated exposures. Without etiologic 

knowledge we assume Z1, Z2, and Z3 are potential confounders of the exposures and exposures may 

have a common source due to high correlations (Figures 3 & 4). All variables potentially contribute to 

the outcome. 

Separate linear regression models for each X, adjusting for Z1 and Z2, indicated strong associations 

between the individual exposures and the outcome. The risk in interpreting these estimates and their 

accompanying statistical tests, however, lies in the possibility of a common, unmeasured source of 

exposure resulting from confounding. In order to avoid this pitfall while simultaneously reducing 

dimensionality of the multiple linear regression model, separate regression models were fit for each 

exposure X, adjusting for a subset of principal components on the remaining variables. Since no prior 

knowledge was given on the relationship between the exposures, PC’s were chosen by a new selection 

criterion, where the criterion for adding a PC to the model was a 10% or greater change in the exposure 

parameter of interest. Z1 and Z2 were included in all models, and models were stratified by Z3 to permit 

assessment of potential effect modification. Regression coefficients, standard errors, and corresponding 

p-values are provided in Table 2 for each of the 14 exposure-specified PC adjusted models. PC 

adjustment indicated several exposures potentially associated with the outcome as well as evidence of 

interaction with Z3 across most of the chemicals. It remains clear from these analyses that structural 

knowledge is indispensable for dimensionality reduction.  

Discussion 

The high correlation between some of the exposures could conceivably be the same exposure subject to 

measurement error, measured multiple times. A priori background knowledge of the biology, chemical 

structure, and modes of action could help navigate potential causal structures to be assessed. While 

beyond the scope of this particular analysis, methods to test the causal assumptions could be applied. 

The current analyses represent only a preliminary approach based solely on statistical investigation. 

While these statistical methods may improve detection of statistical significance by reducing multi-

collinearity, the result unfortunately is purely numerical. Rather, accurate and thoughtful 

conceptualization of specific study questions could help guide further analysis into etiological 

underpinnings given the available data. In epidemiology, correctly specifying the causal structure is 

paramount and should be prioritized over improved model fit. The overall goal is to gain efficiency on 

the parameter of interest, while appropriately accounting for a thoughtful set of confounders. Thus it is 
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imperative to identify and characterize the exposure of interest, and build the corresponding causal 

DAG, before proceeding with statistical analysis, especially in scenarios with highly correlated mixtures. 

If the causal structure is not correctly specified, all the results may be biased. By combining a priori 

knowledge of potential causal associations with appropriate analytical techniques, vast advances 

towards providing pertinent knowledge concerning etiological effects of mixtures of exposures could be 

achieved. 
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14. Examining Associations Between Multi Pollutant Exposure Profiles 

and Health Outcomes via Bayesian Profile Regression 
Presenting Author:  John Molitor 

Organization: Oregon State University 

Contributing Authors:  John Molitor, Eric Coker, and Silvia Liverani 

Abstract:  

Background: Our approach to modeling the health effects of chemical mixtures is implemented via a 

semi-parametric Bayesian approach we denote as profile regression. Bayesian profile regression is an 

adaptable, dimension reduction technique, capable of clustering multiple covariate data, thus 

overcoming unstable estimation problems associated with multicolinearity that we see with 

conventional multivariate linear regression. Furthermore, our approach enables a simplified 

examination of the joint health effects of correlated variables to aid in identifying risk drivers, which may 

otherwise prove computationally intensive or challenging in terms of interpretation of the joint effects 

when using conventional regression approaches. This Bayesian profile regression approach is able to 

partition and cluster covariate data into exposure profiles with similar risk without relying on the hard 

clustering techniques that have been well described in the literature. Avoidance of hard clustering is 

advantageous in that uncertainty is appropriately handled during the clustering process, and therefore 

the presumptive parameterization that can overly influence the clustering results and risk estimates 

downstream is likely to be avoided. Estimation of exposure profiles of interest are obtained via 

averaging over all clustering obtained via the iterative estimation process. For interpretative reasons, a 

single “best” clustering can be obtained, though uncertainty (C.I.’s, standard errors) related to this 

clustering is also assessed via averaging over all the clustering obtained via the estimation process, 

meaning that consistent clustering results in lower standard errors. Importantly, our approach is readily 

implemented using the PReMiuM package in R, thus making our approach widely accessible to 

researchers in a variety of settings.  

Method: Our approach for the purposes of analyzing these two simulated datasets involved a multi-

stage process that exploits various features of the PReMiuM package. In order to establish our clustering 

variables we first implemented the variable selection feature of the PReMiuM package. In this first 

stage, covariates were switched on and off iteratively so as to identify the most probable combination of 

covariates that drive the clustering risk profiles. Covariates with relatively high median probabilities of 

being selected as candidate clustering variables were included as clustering variables in the second stage 

of the Bayesian profile regression. Covariates with relatively low median probabilities of being selected 

as a candidate clustering variable were excluded in the second stage as clustering variables and are 

rather included as fixed effects in the Bayesian profile regression model. Covariates, “Z” were included 

in all analyses. Once the second stage profile regression was completed we were able to examine, via 

graphical output, the exposure profile clusters most likely to contribute to the outcome, as well as which 
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fixed effects that were likely to contribute to the outcome (Figures 1, 3). Finally, we examined the 

potential for interaction via predictions of Y for various pre-specified exposure profiles.  

Results: 

Dataset 1 

Covariate data for dataset 1 were non-normally distributed and were thus discretized into three 

categories using the "cut" function in R. All analyses used Z as a confounder, separate from the 

clustering. (See dose-response equation accompanying pdf document.) Variables X1, X2, X3, and X5 

were selected from the initial-stage profile regression variable selection procedure, while X4, X6, X7, and 

Z were analyzed as fixed effects in the second stage model. (We encourage readers to examine Figure 1 

for graphical display of typical exposure mixtures associated with various levels of “risk” – levels of Y.) 

We found that two of the five exposure clusters (clusters 4 and 5) that were identified from the profile 

regression were associated with large values of Y (Figure 1), with cluster 5 exhibiting the largest Y value. 

Within cluster 4, high levels of X1 tended to drive the increased levels of Y, whereas within cluster 5, 

higher levels of X1, X2, and X3 tended to drive the observed high levels of Y, and these variables are 

highly correlated with each other. Given that clusters 1 and 2 were not associated with high values of Y 

and that elevated levels of X5 tended to predominate within these two clusters, it was apparent that 

increased levels of X5 were associated with decreased levels of Y. Cluster 3 was predominantly 

characterized by low levels for each of the clustering variables and was not associated with a high value 

for Y. Regarding the fixed effects in our profile regression model, variable X7 and the confounding 

variable Z each significantly contributed to an increase in Y, while the association between X6 and Y was 

marginal, and variable X4 did not contribute.  

The R package allows for prediction of Y via predefined exposure profiles, even if some of the exposures 

are left unspecified. We utilized this feature to examine interaction between X1 and X5 by predicting Y 

via “pseudo-profiles”, consisting of (X1, X2, X3, X5). X1 and X5 were allowed to vary across category 

levels, while X2 and X3 were treated as missing. Figure 2 shows results of this analysis suggesting 

presence of interaction, meaning the effect of one exposure on Y depends on levels of other 

exposure(s).  

Dataset 2 

The biomarker covariate data were also non-normal and were discretized into three categories using the 

"cut" function in R. Variables X3 through X14 were selected from the initial-stage profile regression 

variable selection procedure, while X1, X2, Z1, Z2, and Z3 were analyzed as fixed effects in the second 

stage model. See Figure 3 for characterization of exposure mixtures and associated risks. We found that 

two of the six exposure profiles clusters (clusters 5 and 6) that were identified from the profile 

regression contributed to high levels of Y. Cluster 5 was associated with high levels of X6-X14, while 

cluster 6 (also high risk) was associated with high levels of X3-X8, X10, X11, and X14 . Note that several 

exposures display similar association patterns (e.g. X3, X4, X5, and X12, X13). PReMiuM allows for 

computation of root mean square error (here 0.43, 0.84 for standard regression). 
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With more information, we could produce GIS maps displaying spatial clustering of individual profiles, 

and compare risks associated with substantively driven predefined exposure mixtures, all of which could 

be used to inform exposure-reduction policy decisions. 
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Figure 1: Optimal clustering for dataset 1. For each covariate, estimates of probabilities of membership to each of three categories (0,1,2) 
are provided for each cluster. For cluster 1 (low risk), X1 , X2, and X3 values are more likely to be in category 0, while X5 values are most 
likely in category 2. Conversely, for clusters 4 and 5 (high risk), X1 , X2, and X3 are more likely in category 2, while X5 is more likely to be in 
category 0. 

 

Figure 2: Predicted densities of Y for various pseudo-profiles specified with varying categorical values for X1 and X5, with other exposure 
covariates left unspecified. Each row displays estimated density of Y as X1 varies across categories 0,1,2 with X5 fixed to a particular 
exposure category. Note difference in density estimates as X1 ranges from 0,1,2 (each row) conditional on different specifications of X5, 
suggesting that the effect of increase in X1 depends on levels of X5, i.e. interaction.  
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Figure 3: Characterization of typical exposure profiles for dataset 2. For each covariate, estimates of probabilities of membership to each of 
three categories (0,1,2) are provided for each cluster. Cluster 5 (high risk) was associated with high levels of X6-X14, while cluster 6 (also 
high risk) was associated with high levels of X3-X8, X10, X11 and X14. Note that several exposures display similar association patterns  (e.g. X3, 
X4, X5 and X12, X13). 

 

Joint dose-response function: Individual-level exposures 𝑋𝑖𝑗  for individual 𝑖 and exposure 𝑗 are clustered into groups at each 

iteration of the iterative estimation process. These clusters (defined at each iteration) are then used as random effects in a standard 
regression model, with 𝜃𝑐  denoting the “effect” for cluster 𝑐 on continuous outcome 𝑦𝑖 . We further denote confounders as 𝑍𝑖 . We then 
set up a standard regression equation as, 

𝑦𝑖 = 𝜃𝑐𝑖
+ 𝛽𝑍𝑖 + 𝜖𝑖  

where 𝜖 ∼ 𝑁(0, 𝜎2). Here 𝑐𝑖 = 𝑐 denotes an allocation variable indicating membership of individual 𝑖 to cluster 𝑐. Given cluster 
parameters allocations, 𝑐𝑖 , conditional independence between covariates is assumed, and 𝑋𝑖𝑗 = 𝑐 ∼ Multinomial(1, 𝜙𝑐𝑖𝑗

) where 𝜙𝑐𝑖𝑗
 is 

the vector of probabilities associated with cluster 𝑐 for each of the possible categories that could be observed for covariate 𝑗. Our joint 
model is then, 

𝑝(𝑌𝑖 , 𝑋𝑖|𝜃, 𝛽, 𝜎) = ∑ 𝜓𝑐𝑝(𝑋𝑖|𝜙)
∞
𝑐=1 𝑝(𝑌𝑖|𝜃, 𝛽, 𝜎). 

with mixture weights 𝜓𝑐  modeled according to a “stick breaking” representation according to a Dirichlet process prior. Note that a 
multivariate normal model is also available for continuous outcomes, though we utilized categorical exposures here. 
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15. Analysis of Simulated Data Sets using Conformal Predictions 
Presenting Author:  Ulf Norinder 

Organization: Swedish Toxicology Sciences Research Center (Swetox) 

Contributing Authors:  Ulf Norinder 

Abstract:  

Conformal prediction (CP) represents a framework that offers an intuitive extension to the application of 

machine-learning methods for data analysis where focus is on predictions with pre-defined confidence 

levels. A conformal predictor will make correct predictions on new instances, e.g. mixtures or 

compounds, corresponding to a user defined confidence level. The set confidence level can be altered 

depending on the situation at hand, which allows for flexibility and adaption to risks that the user is 

willing to take. For a formal description and for proofs of the mathematical theorems on which the 

conformal prediction framework is built, see Vovk et al. 2005. The method has recently been applied to 

data analysis within the regulatory domain (Norinder et al. 2015). 

Method of Analysis: For the analyses of datasets #1 and #2 two algorithms of choice have been utilized 

within the CP framework, namely, random forests (RF) and partial least squares (PLS). The confidence 

level for the framework was set to 80 %, (i.e., the errors from the resulting predictions on the external 

test set should not exceed 20%). The reason for using two different methods is that although RF 

implicitly handles interactions, (i.e., the synergistic and antagonistic effect (AB) of variables A and B), 

and may provide more accurate predictions than other algorithms a more detailed analysis of the 

importance of the variables and particularly interaction effects within the derived model is more difficult 

to achieve. The PLS method, on the other hand, although requiring explicit additions of interactions 

effects, offers possibilities for more explicit understanding of the importance of the variables in the 

model. 

The dataset was randomly split 100 times into a training set (80%) and an external test set (20%) and 

100 models were constructed for each of the two algorithms (RF and PLS, respectively). The outcome 

presented is an average prediction for each instance, when part of the external test set, across all 100 

generated models. 

To evaluate the signal-to-noise ratio in the analyses 4 additional random (white noise) variables were 

added to each dataset. These were also included in the explicit interaction effect variables added to the 

PLS method. 

After analysis of the overall variable importance across all 100 models for the PLS method based on the 

generated training sets (not the external test sets), variable selection was performed to include the final 

variables and interaction effect variables. 

 

55



 

Results: The results are presented in Table 1 and Figures 1 –3 (marked yellow in Table 1). 

Table 1. Average external test set predictions 

 

  

Dataset Method Variables R2 adj-R2 RMSE Spearman rank CP-validity Binary

DataSet1 RF 0.916 0.914 3.165 0.950 82.3 90.0 (≥90)

DataSet1 PLS

removed 

x4,x6. Added 

x1*Z 0.909 0.908

DataSet1 PLS

removed 

x4,x6. Added 

x1*Z, x2*x3 0.910 0.908

DataSet1 PLS

removed 

x4,x6. Added 

x1*Z, x2*x3, 

x5*x7 0.913 0.911

DataSet1 PLS

removed 

x4,x6. Added 

x1*Z, x5*x7 0.913 0.912 3.177 80.3

DataSet2 RF 0.507 0.490 0.460 0.691 80.3 70.2 (≥70)

DataSet2 PLS

removed 

x2,x7,x9,x13,

z1 0.490 0.472 0.467 80.9

data_05182015 RF 0.160 9.438 0.367 82.2 71.8 (≥70)
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CP-validity should be above 80 (%) since the confidence level was set to 80 for regression. 

 

For dataset #1 x1*Z and x5*x7 were added as possible interaction effects. 

For dataset #2 it is difficult to identify interaction effects with significant statistical significance. 

                   

Figure 1. PLS – dataset #1 external predictions vs. experimental (left) and coefficients plot (right). Blue circles are invalid predictions. 

 

                

Figure 2. RF – dataset #2 external predictions vs. experimental (left) and coefficients plot (right). Blue circles are invalid predictions. 

 

                   

Figure 3. RF – data 05182015 external test set classification (left) and variable importance plot (right). Blue (mdi > 91.5),  red (mdi < 91.5) 
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16. Analysis of Chemical Mixture Simulated Data Using Regularized 

Regression Models 
Presenting Author:  Sung Kyun Park 

Organization: University of Michigan 

Contributing Authors:  Sung Kyun Park,1,2 Yin-Hsiu Chen,3 Weiye Wang,1 John Meeker,2 and Bhramar 

Mukherjee3 
1
Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA 

2
Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA 

3
Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA 

Abstract:  

Introduction: Our research team has previously considered application of various statistical strategies to 

examine health effects of multiple pollutants and their interactions using modern variable selection and 

machine learning tools (Sun et al. 2013 Environ Health,12:85). We examined the two simulated datasets 

using these methods.  

Methods: For both datasets, we conducted univariate analyses of each predictor, pairwise correlations 

among predictors, and confounder(s)-adjusted marginal associations between each predictor and 

outcome. Smoothing plots using penalized splines were used to determine potential non-linear 

relationships. We standardized each predictor (i.e., centered then scaled by its standard deviation, [x – 

mean(x)]/SD(x)) to make differently distributed predictors comparable and to reduce correlation 

between possible higher-order terms and pairwise interactions. We evaluated pairwise interactions 

using cross-product terms between predictors as well as predictors and confounders. These ‘statistical’ 

interactions imply departures from additive joint effects. For variable selection methods, we used 

adaptive least absolute shrinkage and selection operator (LASSO), adaptive elastic-net (E-Net), a 

combination of LASSO and ridge regression, and LASSO for hierarchical interaction (hierNet). Model 

goodness-of-fits and predictions were evaluated by adjusted R2 and out-of-bag (OOB) adjusted R2 using 

cross-validation. We also computed the mean squared error (MSE) and the mean squared prediction 

error (MSPE) to compare the prediction performance.  

Results: For data 1, a clear log-linear dose-response association was found with X7, thus X7 was log-

transformed and then standardized. Quadratic terms for all other predictors were considered. Among 

the variable selection methods used, adaptive LASSO was chosen as the final model because of highest 

adjusted R2 (0.950) and adjusted OOB R2 (0.947) and lowest MSE (5.670) and MSPE (6.084) (Table 1). 

Although there were no significant marginal associations with X3 and X6, suggestive interactions 

between X3 and X4 and X5 and X6 were detected, and thus all predictors were included in the final 

model. We also found significant interactions of X1*X2; X1*log(X7); X4*X5; and X5*log(X7) and a 

significant quadratic term of X2 (X22). The final model also included marginally significant terms of 

X2*X5 and X5*Z. Thus, our final model included a total of 17 predictors (see the estimated coefficients 

of the final model in Table 1).  
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For data 2, because of high correlations between X3 and X4 (r=0.99), X3 and X5 (r=0.94), and X12 and 

X13 (r=0.91), X4, X5, and X13 were dropped in the variable selection procedure. Although a marginal 

association with Z1 was weak, its interactions with other predictors were significant and we found a 

better model prediction with Z1 in the model, thus we decided to keep Z1. Smoothing plots suggested 

non-linear associations with X2, X6, X9, and X12, thus quadratic terms were considered in variable 

selection. Because we found significant interactions between Z3, a binary confounder, and several 

predictors, we also considered three-way interactions between those interactions with Z3 and other 

predictors. Among the variable selection methods used, adaptive E-NET was chosen as the final model 

because of highest adjusted R2 (0.568) and lowest MSE (0.174) and MSPE (0.191) (Table 1). This final 

model suggests that X1, X2, X22, X3, X6, X8, X9, X10, X11, X12, and X14 along with Z2, are important 

predictors for Y. Z3 is an important effect modifier. The final model included the following interactions: 

X1*Z1; X2*X8; X10*Z1; and X10*Z2. Z3 seems to modify the effects of X2; X7; X12; X1*X7; X1*X9; 

X2*X14; X3*X14; X3*Z2; X7*Z1; X12; and X62.  Thus, our final model included a total of 28 predictors (see 

the estimated coefficients of the final model in Table 1). Despite a little larger (worse) MSE and MSPE 

than adaptive E-Net, adaptive LASSO which selected 21 predictors could be an option if 

parsimoniousness is considered.  

Conclusion: There is no general consensus model emerging from different selection methods, as 

expected. There is evidence of interaction and non-linearity in the dose-response relationships. These 

statistical models should be supplemented with subject-matter knowledge regarding the pollutants 

considered and their sources. In addition, these models can be strategically constructed to derive 

interpretable and policy relevant summary quantities of health risk. 
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Data 1 
 

 
 
Data 2 

 
Figure 1. Heat maps of pair-wise correlations for Data 1 and 
Data 2 

 
 
Figure 2. Test MSPE against log(λ) from adaptive LASSO in 
Data 1. Adaptive E-NET provided a similar result. (λ=8.6e-5). 

 
Figure 3. MSPE against λ1 and λ2 from adaptive E-NET in 

Data 2 (λ1=9.110-12, λ2=0.079).  
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Table 1. Summary of variable selection results for Data 1 and Data 2.  
 Data 1  Data 2 

 Adaptive 
LASSO 

 Adaptive  
E-Net 

hierNet  Adaptive 
LASSO 

Adaptive  
E-Net 

 hierNet 

Adjusted R
2
 0.950   0.950  0.948  0.564  0.568   0.541  

OOB adj R
2
 0.947  0.946 0.943  0.525 0.523  0.490 

MSE 5.670  5.711 5.806  0.178 0.174  0.188 
MSPE 6.084  6.101 6.394  0.194 0.191  0.208 

No. Var 17 β (SE) 17 23  21 28 β (SE) 24 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variables 
selected 

X1 3.20(0.24)* X1 X1  X1 X1 0.05(0.02)* X1 
X2 1.21(0.22)* X2 X2  X2 X2 0.05(0.03) X2 
X3 0.08(0.23) X3 X3  X6 X3 0.06(0.04) X3 
X4 -0.63(0.13)* X4 X4  X8 X6 0.05(0.03) X6 
X5 -5.15(0.36)* X5 X5  X10 X8 0.03(0.04) X8 
X6 -0.17(0.15) X6 X6  X11 X9 0.02(0.03) X10 

log(X7) 3.42(0.12)* log(X7) log(X7)  X12 X10 0.05(0.04) X11 
Z 10.85(0.32)* Z Z  X14 X11 0.04(0.04) X12 

X5
2 

0.43(0.08)* X5
2 

X2
2
  Z2 X12 0.11(0.04)* X14 

X1*X2 -0.52(0.11)* X1*X2 X4
2
  Z3 X14 0.03(0.04) Z2 

X1* log(X7) 0.62(0.12)* X1* log(X7) X5
2
  X2*X8 Z2 0.13(0.04)* Z3 

X2*X5 -0.23(0.17) X2*X5 X6
2
  X10*Z1 Z3 -0.46(0.04)* X2

2
 

X3*X4 -0.25(0.10)* X3*X4 X1*X2  X10*Z2 X1*Z1 -0.04(0.02) X1*X9 
X4*X5 0.30(0.12)* X4*X5 X1* log(X7)  X2

2
 X2*X8 0.03(0.02) X2*X8 

X5*X6 0.25(0.13)* X5*X6 X2*X5  X2*Z3 X10*Z1 -0.05(0.02)* X2*Z2 
X5* log(X7) -0.33(0.12)* X5* log(X7) X2* log(X7)  X7*Z3 X10*Z2 0.08(0.02)* X3*Z2 

X5*Z -0.44(0.31) X5*Z X3*X4  X12*Z3 X2
2
 0.03(0.01)* X6*Z2 

   X4*X5  X1*X7*Z3 X2*Z3 -0.08(0.04) X7*Z2 
   X4*Z  X3*Z2*Z3 X7*Z3 -0.07(0.04) X8*Z2 
   X5*X6  X7*Z1*Z3 X12*Z3 -0.11(0.05)* X10

2
 

   X5* log(X7)  X6
2
*Z3 X1*X7*Z3 0.06(0.04) X10*Z1 

   X5*Z   X1*X9*Z3 0.04(0.04) X10*Z2 
   X6*Z   X2*X14*Z3 -0.03(0.03) X12*Z3 
      X3*X14*Z3 -0.03(0.04) X14

2
 

      X3*Z2*Z3 -0.03(0.04)  
      X7*Z1*Z3 0.06(0.03)*  
      X1

2
*Z3 -0.04(0.02)  

      X6
2
*Z3 -0.04(0.02)*  

LASSO, least absolute shrinkage and selection operator; hierNet, LASSO for hierarchical interaction; MSE, mean square error; MSPE, mean square prediction 
error; OOB, out-of-bag.  

In β (SE) column, “ * “ means statistically significant at P<0.05. 
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17. Building Models to Assess the Effects of Chemical Mixtures by 

Estimating Similar Modes of Action  
Presenting Author:  Harrison Quick 

Organization: Centers for Disease Control and Prevention 

Contributing Authors:  Harrison Quick, Julia M. Gohlke, and Tran Huynh 

Abstract:  

The proposed methodology builds from the aim to separate exposures based on similar modes of action 

(or “pathways”) from physico-chemical properties and previous toxicity studies. In the absence of this 

information, however, we group covariates by investigating the between-covariate correlations, 

grouping together covariates which are highly correlated (say, R>0.5). For each group of covariates, we 

first fit a model consisting of the main effects for each covariate. We then investigate potential 

interactions between covariates within each (supposed) pathway. Finally, we combine our group-

specific models into a single model, consider interactions between pathways, and proceed with 

standard model selection techniques (e.g., removing non-significant covariates) to obtain a 

parsimonious model. 

 This general strategy is easily extended in the case of potential confounding variables. For a binary (or, 

more generally, categorical) confounder Z, we fit separate conditional models for each level of Z. In 

addition to allowing for interactions between the covariates and Z, this also allows for a different error 

variance parameter for each level of Z. In the case of a continuous confounder z’, we first use our 

strategy without accounting for z’, obtain a parsimonious model, and then consider interaction terms 

between our covariates and z’. An alternative would be to discretize z’ – say, by using quantiles – and 

then treat the discretized z’ as a categorical confounder Z. We could then allow for quantile-specific 

regression coefficients. Unfortunately, this could require splitting our data into several small pieces, so 

such an approach may not always be ideal. Finally, when confronted with numerous potential 

confounders, we may restrict our attention to those which are highly correlated with either the 

covariates or the response. 

As shown in Figure 1(a), we identified the following groups for Dataset #1: {x1, x2, x3}, {x4}, {x5, x6}, and 

{x7}. In our group-specific models, we identify {x1}, {x4}, {x5}, and {x7} as being significant covariates. 

Upon combining our models, however, x4 is no longer significant, perhaps due to its moderate 

correlation with the covariate x1. For both levels of Z, exposure to x1 and x7 are positively associated 

with outcome Y, while exposure to x5 is negatively associated with the outcome. We then consider all 

two-way interactions between x1, x5, and x7. For Z=0, we identify significant interactions between x1 

and both x5 and x7 – in each case, as x1 increases, the effect of the other covariate is diminished. For 

Z=1, however, only the two-way interaction of x1 and x5 is found to be significant; here again, increases 

in x1 diminish the protective effect of x5. Our joint dose-response functions for Dataset #1 are given in 
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equations (1) and (2) of the attached supplement, along with residual plots. These models achieve 

adjusted R-squares of 0.63 and 0.81, respectively. 

Our results for Dataset #2 are much more complex. First and foremost, partitioning the 14 covariates 

into groups was not nearly as clear-cut as for Dataset #1. Nonetheless, as shown in Figure 2(a), we 

identified the following groups: {x1}, {x2}, {x3, x4, x5, x6, x8, x10, x11, x14}, {x7, x9}, and {x12, x13}. 

Unlike in Dataset #1, we did not notice a difference in variability between Z=0 and Z=1, thus we fit a 

conditional model in which each level of Z shares the same variance parameter. Here, we identify x2, x5, 

x6, x10, x12, and x14 as the exposures which contribute to the outcome and x1, x3, x4, x7, x8, x9, x11, 

and x13 as those which do not. Similarly, the continuous confounder z2’ appears significantly correlated 

with the response, but z1’ is not. While we failed to identify any significant interactions between our 

covariates and the response – or between the covariates and z2’ and the response – there are 

substantial differences between the models for Z=0 and Z=1. For instance, x2, x5, x6, x10, and x12 are all 

positively associated with the response when Z=0, but only x14 is positively associated with the 

response for Z=1, with x12 being negatively associated with response Y. In total, our joint dose-response 

function for Dataset #2 is provided in Table 1 of the attached pdf, which yields an adjusted R-square of 

0.54. 
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Supplemental materials for “Building models to assess the effects of 
chemical mixtures by estimating similar modes of action” by 

Quick, Gohlke, and Huynh

1 Dataset #1
For this analysis, we (natural) log-transformed both Y and X. Our final models were:

ln Yi | Zi = 0 ~ N (2.89 + 0.18 ln xi1 − 0.20 ln xi5 + 0.21 ln x
Æ

i7

+0.09 ln xi1 ln x 2
i5 − 0.06 ln xi1 ln xi7, σ0 (1)

ln Yi | Zi = 1 ∼ N (3.36 + 0.20 ln xi1 − 0.16 ln xi5 + 0.13 ln x
Ĭ

i7

+0.04 ln xi1 ln xi5, σ1
2 . (2)

Plots of our covariate groups (i.e., supposed pathways) and residuals can be found in Figure 1.

(a) Grouping (b) Zi = 0, σ0
2 = 0.071 (c) Zi = 1, σ1

2 = 0.008

Figure 1: Plots for Datasets #1. Panel 1(a) shows our covariate groups (based on highly 
correlated covariate pairs, e.g., |Cor(xj , xjĬ )| > 0.5), and panels 1(b) and 1(c) display residual plots 
for each level of Z.

2 Dataset #2
Sticking with the notation in the abstract, the binary confounder is denoted as Z while the
two continuous confounders are denoted as ZĬ

1 and ZĬ
2. After fitting our conditional models, we 

found that σ2
Z=0 ≈ σ2

Z=1, so we refit the model using a shared variance parameter, σ2. Our final 
model is given in Table 1. Plots of our covariate groups and residuals can be found in Figure 2.
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Covariate
Effect for Zi = 0 
Est. (95% CI)

Effect for Zi = 1 
Est. (95% CI)

(Intercept)
x2
x5
x6
x10
x12
x14
zĬ

2

3.434 (3.107, 3.761) 
0.084 (0.002, 0.165) 
0.088 (0.022, 0.154) 
0.094 (0.026, 0.162) 
0.123 (0.033, 0.213) 
0.505 (0.316, 0.695)

—
0.005 (0.001, 0.010)

3.226 (3.102, 3.349)—
—
—
—

-0.148 (-0.322, 0.026) 
0.166 (0.057, 0.275) 
0.007 (0.004, 0.011)

Table 1: Estimated regression model for Dataset #2. The estimate variance from this model is σ2 = 
0.19. Aside from x12 for Zi = 1 (which is significant at the 0.1 level), all coefficients are significant at 
the 0.05 level. Cells marked with “—” denote a covariate which was insignificant for that level of 
Zi.

(a) Grouping (b) Zi = 0 (c) Zi = 1

Figure 2: Plots for Dataset #2. Panel 2(a) shows our covariate groups (based on highly correlated 
covariate pairs, e.g., |Cor(xj , xjĬ )| > 0.5), and panels 2(b) and 2(c) display residual plots for each 
level of Z.
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18. Application of Principal Component Analysis and Stepwise 

Regression to Identify the Exposure Variables Associated with 

Health Outcome and to Determine Dose-Response Relationship 
Presenting Author:  Sheikh Rahman 

Organization: Northeastern University 

Contributing Authors:  Sheikh M. Rahman1 and April Z. Gu1 
1
 Department of Civil and Environmental Engineering, Northeastern University, 400 Snell Engineering Center, 360 Huntington 

Ave, Boston, MA 02115, USA 

Abstract:  

Introduction: Most health outcomes are the effect of exposure to pollutants, and in most cases the 

effects are worsened by the interaction of multiple exposures. The presence of other exposures may 

alter the effect of a specific exposure on the outcome, resulting in a confounding effect. This study was 

conducted to explore statistical approaches to find the exposures that are significantly associated with 

the outcome, possible confounding factors, and dose response function. This study also analyzed the 

possibilities of exposure interaction effects on the outcome. 

Methodology: The analyses of the present study focused on the two simulated datasets as well as one 

real world dataset. Dataset_1 consists of 7 exposure variables and 1 possible confounding binary 

variable. Dataset_2 consists of 14 exposure variables as well as 3 possible confounding variables 

representing a cross-sectional study. The real world dataset contains mental development index (MDI) 

as the outcome variable, 22 continuous exposure variables, and 5 possible dichotomous covariate 

variables. 

We have estimated the correlation matrix along with the p-values to find out the co-linearity between 

the outcome parameter and the exposure variables. Significant correlation with the outcome variable is 

used to identify which variables can contribute to the outcome. We have further conducted Principal 

Component Analysis (PCA) on the exposure variables to identify the variables that can capture 

significant amount of variances in the data. Finally, forward stepwise regressionwas applied to estimate 

the dose-response function between the exposures and outcome. All the analyses have been conducted 

separately on the three datasets using statistical software R-3.0.2. 

Results and Discussion: From the correlation matrix of dataset_1 presented in Figure 1-a, it can be seen 

that variables X1, X2, X3, X7, and Z show higher correlation with outcome variable Y. However, X2 and 

X3 show very high correlation and might be collinear with each other. On the other hand, variables x3, 

x4, x5, x6, x8, x14, z2, and z3 show higher correlation with outcome y for dataset_2 (Figure 1-b), while 

correlation of x1 and z1 with y is not significant at 95% confidence level. For the real world dataset only 

pcb_74 and pcb_118 show significant correlation with mdi, but 4 of the 5 covariate variables show 

significant correlation. 
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PCA is used to find a linear projection of high dimensional data into a lower dimensional subspace by 

maximizing the variances retained and minimizing least square error. Scree plots, which present the 

eigenvalues of different Principal Components (PCs), are presented in Figure 2 and show sharp bend at 

third PC. However, since eigenvalue of PC3 is less than 1 for dataset_1, the first two PCs can be selected 

to represent dataset_1, which can explain approximately 45% and 21% of the variances,respectively. 

Though for dataset_2 third PC has eigenvalue greater than 1, it can represent less than 10% of the 

variances and the first two PCs can explain approximately 40% and 19% of the variances. PCA loadings, 

which represent the correlation of exposure variables with the PCs and can be used to identify the 

variables accounting for the significant amount of variation in the data, are presented in Figure 2-d, e, 

and f. For dataset_1, X1, X2, X3, and Z are seen to be mostly correlated with PC1, hence they are the 

most significant variables responsible for the variation. Furthermore, X5 and X6 are highly correlated 

with PC2, but X4 and X7 do not show higher correlation with any of the PCs. For dataset_2, variables 

correlated with PC1 are x3, x4, x5, x6, x8, x10, x11, x14, and z2; while x12 and x13 are highly correlated 

with PC2. X7 and x9 are correlated with both the PC1 and PC2. For the real world dataset, almost 15 of 

the variables are highly correlated with PC1 and 44 of them are correlated with PC2.  

In order to determine how much different variables can affect the outcome and dose-response function, 

we have conducted step-wise forward regression analysis. Step-wise forward regression finds out the 

most significant models by adding variables to the model starting with the intercept until the new model 

further improves the model selection criteria such as adjusted R-square, t-statistic. Table 1 summarizes 

two regression models of dataset_1 generated with all exposure variables and all variables except Z. 

Both the models show high F-statistics and when Z is added to the model, it improves the model 

accuracy as adjusted R-square increases from 0.808 to 0.917. High F-stat value of 650  indicates that two 

models with or without Z are significantly different from each other. From the regression model we may 

conclude that Z is a possible confounding variable for outcome in dataset_1. In addition, outcome 

variable Y can be estimated as a function of exposure variables X1, X2, X4, X5, X7, and Z with coefficients 

reported in table 1. We have also found significant models for dataset_2 with high F-stat, and the results 

are presented in Table 2. For dataset_2, z2 and z3 significantly improve the model as adjusted R-square 

increases to 0.501 from 0.297. From F-test we have also found that the model with and without z’s are 

significantly different from each other and outcome y of dataset_2 can be modelled as a function of x6, 

x11, x12, z2, and z3. For the real world dataset, consideration of covariates improves model accuracy 

since adjusted R-square increased and outcome, mdi, is a function of mom_educ, mom_race, child_sex, 

lip_pcb118, and lip_PBDE_100 (Table 3). Additionally, we have estimated a regression model with the 

interaction terms between all the exposure variables to find out the effect of interaction between 

variables on the outcome and summarized in Table 3. It shows that interaction term X*X2, X5*X7 and 

Z*X5 is significant at 0.05 significance level and also increases the adjusted R-square of the model 

slightly. Similar effect of interaction can be also obtained for dataset_2. In summary, the present study 

applies different statistical approaches to explore the significant exposure variables along with 

confounding variables associated with health outcome, their dose-response relationship, and possible 

effects of exposure interaction on outcome. 
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a) Dataset_1. Y is the outcome 

variable 

b) Dataset_2. y is the outcome 

variable 

c) Real world dataset. mdi is the 

outcome variable 

 

Figure 1. Correlation matrix of the datasets. Circle size is corresponding to the magnitude and the 

color corresponds to the sign. × sign indicates that, the correlation is not significant on a 0.05 

significance level. 

 

 

   

 

a) Scree plot of PCA of dataset_1 b) Scree plot of PCA of dataset_2 c) Scree plot of Real world dataset   

   

 

d) PCA loadings of variables along 

PC1 and PC2 for dataset_1 

e) PCA loadings of variables along 

PC1 and PC2 for dataset_2 

f) Variables PCA loadings along 

PC1 and PC2 for real world dataset 

 

Figure 2. Plot of PCA results for the both dataset_1 and dataset_2. Scree plot is the plot of Eigen 

values of different Principal Components (PCs). PCA loadings of the variables represent the 

contribution of the variables along PCs. 
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Table 1. Summary of regression analysis result of dataset_1. F-statistic shown in the table indicates the 

models are significantly different from the model with no variable. 

Parameter 
Model without Z Model with Z 

Estimate Standard Error p-value Estimate Standard Error p-value 

Intercept 12.15 0.65 < 2.00E-16 14.29 0.44 < 2.00E-16 

X1 6.22 0.35 < 2.00E-16 2.91 0.26 < 2.00E-16 

X2 6.27 0.80 2.5E-14 3.18 0.54 6.38E-09 

X4 -1.02 0.27 0.000169 -0.97 0.18 6.78E-08 

X5 -3.52 0.22 < 2.00E-16 -3.62 0.14 < 2.00E-16 

X7 3.02 0.23 < 2.00E-16 2.92 0.15 < 2.00E-16 

Z -- -- -- 11.43 0.45 < 2.00E-16 

Adjusted R-squared 0.808 0.917 

F-statistic (p-value) 919.7 (< 2.2e-16) 421.1 (2.2e-16) 

 

Table 2. Summary of regression analysis result of dataset_2. F-statistic shown in the table indicates the 

models are significantly different from the model with no variable. 

Parameter 
Model without Z Model with Z 

Estimate Standard Error p-value Estimate Standard Error p-value 

Intercept 3.16 0.15 < 2.00E-16 3.21 0.17 < 2.00E-16 

x1 -- -- -- 0.06 0.03 0.0529 

x2 0.07 0.04 0.0438 -- -- -- 

x4 0.14 0.03 1.75E-06 -- -- -- 

x6 0.05 0.03 0.11878 0.06 0.03 0.0239 

x10 0.07 0.04 0.05144 -- -- -- 

x11 -- -- -- 0.09 0.04 0.0106 

x12 0.22 0.08 0.00689 0.16 0.07 0.0237 

x14 0.14 0.06 0.00887 0.08 0.05 0.0963 

z2 -- -- -- 0.01 0.00 6.61E-08 

z3 -- -- -- -0.62 0.04 < 2.00E-16 

Adjusted R-squared 0.297 0.501 

F-statistic (p-value) 36.21 (< 2.2e-16) 72.65 (2.2e-16) 

 

Table 3. Summary of regression analysis result of Real world dataset. F-statistic shown in the table indicates 

the models are significantly different from the model with no variable. 

Parameter 
Model without covariates Model with covariates 

Estimate Standard Error p-value Estimate Standard Error p-value 

Intercept 89.8 1.28 < 2.00E-16 95.3 1.15 < 2.00E-16 

lip_pcb74 0.71 0.33 0.0306 -- -- -- 

lip_PBDE_100 -0.07 0.04 0.0874 -0.06 .04 0.109 

mom_educ -- -- -- -6.49 1.55 3.77e-05 

mom_race -- -- -- -5.34 1.38 0.0001 

child_sex -- -- -- -3.28 1.15 0.0046 

lip_pcb118 -- -- -- 0.22 0.11 0.0525 

Adjusted R-squared 0.02 0.205 

F-statistic (p-value) 3.77 (0.02) 14.87 (7.4e-13) 

 

Table 4. Regression model of dataset_1 with interaction terms. Adjusted R-squared:  0.923 

Parameter Intercept Z X5 X7 X1 X2 X4 X1:X2 X5:X7 Z:X5 

Estimate 12.22 11.32 -3.15 3.52 4.98 4.66 -1.29 -1.32 -0.51 -0.62 

Std. Error 0.62 0.62 0.28 0.25 0.59 0.65 0.24 0.34 0.15 0.29 

p-value <2E-16 <2E-16 <2E-16 <2E-16 3E-16 2E-12 1.7E-07 0.0001 0.0008 0.036 
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19. Identifying the Relative Importance of Multiple Correlated 

Exposures in Predicting a Continuous Outcome Using the Random 

Forest Ensemble Learning Method 
Presenting Author:  Anne Starling 

Organization: Colorado School of Public Health 

Contributing Authors:  Anne P. Starling, Katerina Kechris, Dana Dabelea, and John L. Adgate 

Abstract:  

Background: A common problem in environmental epidemiology is the analysis of a set of correlated 

chemical exposures which may have synergistic or antagonistic relationships in their associations with 

an outcome of interest. Traditional regression-based methods tend to perform poorly in such scenarios, 

and methods of testing the significance of statistical interactions between exposures have limited 

power. We propose to use the recursive partitioning method of random forests, which may be 

implemented using freely-available R software [1,2,3]. This method has recently found numerous 

applications in fields including statistical genomics, but the use of this method in environmental 

epidemiology has thus far been limited [4]. 

The random forest algorithm has a number of advantages relevant to the problem of multiple correlated 

exposures: it is non-parametric and can identify non-linear associations, and it allows for interactions 

(non-additive effects) of combinations of variables in the prediction of a continuous or categorical 

outcome. The basic principle of a regression tree is a hierarchical approach in which observations are 

divided at each node of a tree based on values of the predictor above or below a cutoff value, 

determined as the cutoff leading to the greatest difference between groups in mean outcome value [4]. 

“Random forests” consist of a large set of decision trees constructed with between-tree variation 

introduced by random sampling of observations at the root of each tree and of predictors at each binary 

split. The collection of trees performs better than a single tree and avoids over-fitting, and may be 

applied to classification or regression problems. 

Parameters of the forest which may be specified by the user, include the number of trees and the 

number of variables sampled at each binary division. Sensitivity analyses can be performed to describe 

the impact of changing these parameters on the relative importance of the predictors. An internal 

validation procedure is incorporated into the process because each tree uses only a random sample of 

the observations, and the unselected “out-of-bag” observations are used for testing the prediction error 

of the tree. 

Methods: We applied this method, using the R package randomForestSRC, to the two simulated 

datasets, and compared the results to those of multiple linear regression models with no interaction 

terms. The relative importance of each predictor is defined as the average change (over all trees) in the 

mean squared error of the model when values of that variable are randomly permuted; in other words, 

the overall improvement in model fit provided by that variable. 
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Analyses were conducted in R version 3.1.3. 

Results: The relative importance of the predictors in each dataset differed from the significance of the 

predictors determined by linear regression models. In Data Set #1, the variables with the highest relative 

importance from the random forest model were X1, X7 and X5, where variable X4 contributed very little 

information (Table 1). In the linear regression model, variables X1, X7 and X5 were identified as 

significant predictors of the outcome (type III sum of squares p-value <0.0001) but variable X4 was also 

significant. 

Partial dependence plots may provide insight into the marginal association of each variable with the 

outcome (Figure 1). The positive association between X3 and Y identified by the random forest model 

disagrees with the non-significant inverse association identified by the linear regression model (Table 1). 

The high degree of correlation between X3 and X1 (r=0.88) and between X3 and X2 (r=0.88) may explain 

this discrepancy. 

In Data Set #2, the variables with the greatest relative importance were Z3, X4, X3, and X8 (Table 2). Of 

slightly less importance were variables Z2 and X6. In the linear regression model, only one exposure, X6, 

and two confounders (Z3, Z2) had significant p-values for the type III sum of squares. Both random 

forest and linear regression results indicate that the exposures in Data Set #2 were relatively weak 

predictors of the outcome, compared to those in Data Set #1. However, the random forest model 

indicates that X4 and X3 have some importance in predicting the outcome. The percent variance 

explained by the predictors in the random forest models (Data Set #1, R2=0.9134; Data Set #2, 

R2=0.4987) were similar to the adjusted R2 of the linear regression models (Data Set #1, R2=0.9167; 

Data Set #2, R2=0.4951). 

The random forest model automatically considers interactions between predictors. Partial dependence 

plots can also show the joint effects of two predictors on an outcome to explore non- additive effects, as 

shown for X1 by quintiles of X2 in Data Set #1 (Figure 2). 

Conclusions: Use of the random forest ensemble learning method led to different conclusions regarding 

the importance of certain predictors when compared to linear regression models, possibly due to 

multicollinearity in the linear regression models. A limitation of the random forest approach is that there 

is no single regression equation which can be produced and therefore the results of the model are not 

directly comparable to the results of more familiar regression methods, although predicted values of the 

outcome can be estimated for a given forest and a given set of exposure values. Depending on the goal 

of the analysis, variable importance ranks may be useful as presented, or may be used to select or 

transform variables in a more traditional analytic method. However, there is currently no standard 

criterion for the level of variable importance which should be retained in the model. The combination of 

variable importance ranking and partial dependence plots may provide a comprehensive view of the 

role of multiple, correlated predictors and their independent and joint associations (linear or non- 

linear) with continuous or categorical outcomes. 
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Table 1. Linear regression results and variable importance from random forest for Data Set #1. 

Parameter Estimate Standard 

Error 

t value Pr > |t|  Variable Importance in 

random forest 

X1 2.91 0.29 9.98 <0.0001  66.1 

X2 3.19 0.62 5.15 <0.0001  4.03 

X3 -0.01 0.31 -0.02 0.98  6.11 

X4 -0.98 0.18 -5.49 <0.0001  0.327 

X5 -3.55 0.18 -20.1 <0.0001  16.4 

X6 -0.14 0.21 -0.68 0.50  1.41 

X7 2.93 0.15 19.36 <0.0001  17.6 

Z 11.4 0.45 25.4 <0.0001  50.1 

 

Figure 1. Partial dependence plots for each predictor variable in Data Set #1. 
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Table 2. Linear regression results and variable importance from random forest for Data Set #2. 

Parameter Estimate Standard 

Error 

t value Pr > |t|  Variable Importance in 

random forest 

X1 0.058 0.033 1.75 0.080  0.0018 

X2 0.018 0.031 0.59 0.554  0.0051 

X3 -0.030 0.103 -0.29 0.774  0.0242 

X4 0.053 0.114 0.46 0.644  0.0242 

X5 0.004 0.043 0.10 0.923  0.0075 

X6 0.060 0.030 1.99 0.047  0.0112 

X7 -0.031 0.062 -0.50 0.620  0.0025 

X8 0.017 0.041 0.41 0.679  0.0199 

X9 0.025 0.059 0.42 0.673  0.0017 

X10 0.052 0.047 1.13 0.260  0.0049 

X11 0.049 0.052 0.95 0.341  0.0061 

X12 0.222 0.150 1.48 0.138  0.0060 

X13 -0.083 0.152 -0.54 0.586  0.0053 

X14 0.054 0.051 1.05 0.293  0.0093 

Z1 0.006 0.014 0.41 0.685  0.0001 

Z2 0.006 0.002 3.35 0.001  0.0131 

Z3 -0.609 0.044 -13.8 <0.0001  0.1733 

 

Figure 2. Partial dependence plot for variable X1 by quintiles of variable X2 in Data Set #1.  
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20. Improving Prediction Models by Adding Interaction Terms Using a 

Feasible Solution Algorithm 
Presenting Author:  Arnold Stromberg 
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Contributing Authors:  Li Xu, Joshua Lambert, Bernhard Hannig, and Arnold Stromberg 

Abstract:  

Consider the problem of identifying interactions in existing data sets. This is typically done using 

machine learning or by using a software-aided selection process (forward, backward, stepwise) followed 

by looking for specific lower-order interactions between the reduced set of variables. Usually the 

computational complexity of finding these interactions prevents researchers from looking at all. The 

algorithm that will be presented provides a set of potentially interesting interactions that exist in the 

data set of interest. The algorithm can work for any objective function and for practically any model of 

interest. In the poster we will discuss the findings of the algorithm with the NIEHS data and future uses 

of the algorithm in other settings. 
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Abstract:  

Background: It is well established that fitting common multivariable regression models with highly 

correlated predictors (exposures) can fail to converge and estimated coefficients may be unstable if 

convergence is achieved (Hoerl,Technometrics,1970). More recent approaches consider Bayesian 

hierarchical (MacLehose,Epidemiology,2007) and latent variable models (Sanchez,Biometrics,2012). 

However, high-dimensional predictor models remain an analytic challenge both in implementation and 

in coefficient interpretation. We propose to leverage the benefits of factor and latent class models in 

handling and evaluating complex correlated data structures. Factor models cluster components by 

defining regression relationships between the observed exposures and the underlying continuous 

factors with the goal of capturing common content among measured values. Latent class analysis 

clusters subjects with similar exposures allowing us to identify exposure subtypes. The combination of 

factor and latent class models are termed factor mixture models (Muthen&Shedden,Biometrics,1999). 

With this approach we are able to relax the within class independence assumptions of the common 

latent class analysis, such that observed exposures within a class follow a factor model imposed 

structure on the covariance matrix and mean vector. Herein, we illustrate the use of factor mixture 

models to assess health effects of environmental chemical mixtures using two simulated datasets with 

data collected at a single time point. 

Methods:  We began the analysis by conducting an exploratory factor analysis of the exposure variables 

and used the results to specify the pattern of factor loadings in the factor mixture model. Factor 

loadings were specified to be class invariant, i.e., equal across classes. No restrictions on the means of 

the observed exposures variables were specified, i.e., intercepts of all indicators of the factors were 

class specific. Factor mixture models were fitted with an increasing number of classes and the fit of the 

different models were compared using AIC, BIC, and Vuong-Lo-Mendell-Rubin likelihood ratio test. The 

probability of belonging to each of the classes was predicted for each subject and was allowed to be 

predicted by covariates. Mplus 7.1 was used for model fitting and SAS 9.4 to evaluate associations and 

exposure interactions on outcome using linear regression models. 

Results: 

Dataset 1:  There are 500 subjects with seven continuous exposure measurements (x1-x7), one binary 

potential confounder (z), one continuous outcome variable (y) and no missing data.  

The correlation coefficients indicate that exposure variables x1,x2, and x3 are highly correlated, as well 

as x5 with x6. Assessing one exposure at a time, x1,x2,x3, and x7 were positively associated with y and 
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x5 and x6 were negatively associated with y. X4 was not significantly associated with y. The factor model 

has a two-factor structure, based on eigenvalues of the correlation matrix greater than 1, with x1,x2,x3, 

x4, x7 loading on factor 1 and x5,x6 loading on factor 2. The model has two cross-loadings; x4 has a small 

negative loading on factor 2 and x7 has a small positive loading on factor 2. Fit measures indicated that 

the three-class model provided a better fit over the single-class and two-class models and the four-class 

model did not improve fit. Factor loadings are shown in Table 1. Z was incorporated as a covariate in the 

factor mixture model and determined to be an important covariate for factor 1 and predictor of class 

membership. 

The characteristics of the three clusters of subjects are shown in Table 2. Class 1 represents low values 

of y with z=0 and average factor scores at 0 for both factor 1 and 2. Class 2 represents med/high values 

of y with z=1 and high factors scores for factor 1 and low factor scores for factor 2.  Class 3 represents 

high values of y with z=1 and high factors scores for both factor 1 and 2.  

Through the factor loadings, all 7 exposures (x1-x7) contribute to the outcome and quantified by 

regression estimates in Table 3 (adjusted R2=0.80). There was evidence of a class by factor 1 interaction 

on the outcome, such that the impact of the additive effect of x1,x2,x3,x4,x7 on y varied significantly by 

class (p<0.01). The additive effect, or linear combination of x5,x6,x4,x7 (factor 2) was negatively 

associated with y and did not vary by class (Table 3, Figures 1 and 2). 

Data set 2:  There are 500 subjects with 14 continuous exposure measurements (x1-x14), three potential 

confounders (z1-z3), one continuous outcome variable (y), and no missing data. 

Assessing one exposure at a time, all 14 exposures (x1-x14) were positively associated with y. The factor 

model had a three-factor structure with the two-class model indicating best fit. Factor loadings are 

shown in Table 4. z2 was determined to be an important covariate for factors 1,2, and 3, and z2 and z3 

were predictors of class membership. z1 was not significant in the model and subsequently removed. 

The characteristics of the two clusters of subjects are shown in Table 5. Class 1 represents low values of 

y with low factor 2 scores and high factor 3 scores. Class 2 represents high values of y with high factor 2 

scores and low factor 3 scores. Through the factor loadings, all 14 exposures (x1-x14) contribute to the 

outcome and quantified by regression estimates in Table 6 (adjusted R2=0.58). There was evidence of a 

class by factor 3 interaction on the outcome, such that the impact of the additive effect of 

x1,x2,x7,x9,x12,x13, x14 on y varied significantly by class (p<0.01). For class 2, an increase in factor 3 

score was associated with higher y values, whereas factor 3 had less of an impact for subjects in class 1. 

The additive effect, or linear combination of x3,x4,x5,x14,x8,x6,x2,x11, x7 (factor 1) and of 

x10,x11,x9,x7,x8,x6,x14,x2 (factor 2) were positively associated with y and did not vary by class (Table 5, 

Figures 3-5). 

Conclusion:  We were able to identify exposure subtypes (classes) and factor structures that were 

associated with the outcome y. A limitation of this approach is that we did not have an alternative 

dataset to validate the factor structure, although cross-validation techniques could be used, and the 

interpretation of the factor scores hinge on the rational of the additive exposure construct.  
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Factor mixture model (Muthen&Shedden,Biometrics,1999):      
Let X (matrix notation) denote the multivariate observed 
exposure variables, such that xi is subject i’s value on exposure 
variable x and Z the covariate matrix.  The factor model can be 
expressed as shown in Equation 1. The regression intercepts are 
denoted as 𝑣𝑣, the regression slopes or factor loadings as Λ𝑥𝑥, and 
the regression residuals as 𝜀𝜀𝑖𝑖.  The effect of Z on X is captured by 
the regression coefficient Γ𝑥𝑥.  Factor scores are denoted by 𝜂𝜂.  
The model assumes that the residuals have zero autocorrelations 
and are uncorrelated with the factors.  The factor scores 𝜂𝜂 vary 
by covariate Z with regression coefficients Γ𝜂𝜂.   

Equation 1:  𝑋𝑋𝑖𝑖 = 𝑣𝑣 + Λ𝑥𝑥𝜂𝜂𝑖𝑖 + Γ𝑥𝑥𝑧𝑧𝑖𝑖 + 𝜀𝜀𝑖𝑖 
                                𝜂𝜂𝑖𝑖 = Γ𝜂𝜂𝑧𝑧𝑖𝑖 + 𝜁𝜁𝑖𝑖  
The factor model can be extended to include a latent class 
variable.  Let k = 1,… K represent latent classes 

1 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 𝑖𝑖 𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖 𝑖𝑖𝑏𝑏 𝑐𝑐𝑏𝑏𝑐𝑐𝑖𝑖𝑖𝑖 𝑘𝑘𝑐𝑐𝑖𝑖𝑖𝑖 = �  
0 𝑏𝑏𝑖𝑖ℎ𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖                                      

Then we attached subscript k to parameters that may vary 
across classes as shown in Equation 3. Note that A contains 
the intercepts of the factors for each class and is of 
dimension number of factors x number of classes.    

Equation 3:   𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑖𝑖 + Λ𝑥𝑥𝑖𝑖𝜂𝜂𝑖𝑖𝑖𝑖 + Γ𝑥𝑥𝑖𝑖𝑧𝑧𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 
                             𝜂𝜂𝑖𝑖𝑖𝑖 = A𝑐𝑐𝑖𝑖 + Γ𝜂𝜂𝑖𝑖𝑧𝑧𝑖𝑖 + 𝜁𝜁𝑖𝑖𝑖𝑖  
The probability of belonging to each of the classes is 
predicted for each subject using multinomial regression and 
class membership may be predicted by covariates Z.  Then, 
the outcome y is predicted by regression Equation 4 
including subject factor scores 𝜂𝜂𝑖𝑖and assigned class 
membership ci. 

Equation 4:  𝑌𝑌𝑖𝑖 = 𝛣𝛣𝑐𝑐𝑖𝑖 +  𝛥𝛥𝜂𝜂𝑖𝑖 + 𝛨𝛨𝑧𝑧𝑖𝑖 + 𝜀𝜀𝑖𝑖 

Data set 1: 
Table 1. Class-invariant parameters in th
partially invariant 3-class model 

e 

 Factor loadings 
Mean (SD) 

 Factor 1 
X3 1.00 (0) 
X2 0.63 (0.10) 
X1 0.54 (0.05) 
X4 0.55 (0.10) 
X7 0.29 (0.14) 
 Factor 2 
X6 1.00 (0) 
X5 1.07 (0.21) 
X4 -0.25 (0.07) 
X7 

 

0.16 (0.07) 

Table 2. Characteristics of the 3-class partially invariant model 
 Class 1 – 

(n=288) 
Low Class 2 

(n=158) 
Class 3 – 
(n=54) 

high 

Observed data: 
Y 15.6 (5.2) 32.1 (6.2) 38.9 (6.5) 
Z=1, n(%) 2 (1%) 158 (100%) 54 (100%) 
X1 0.50 (0.26) 1.55 (0.43) 3.36 (0.63) 
X2 0.75 (0.30) 1.24 (0.32) 1.60 (0.35) 
X3 0.60 (0.44) 1.55 (0.70) 2.74 (0.94) 
X4 1.04 (0.76) 1.39 (0.88) 1.69 (0.97) 
X5 1.19 (0.99) 1.34 (1.03) 1.18 (0.99) 
X6 1.14 (0.89) 1.17 (0.79) 1.22 (0.85) 
X7 0.92 (0.82) 1.33 (1.03) 1.65 (1.26) 
Model estimated: 
Factor 1 0.01 (0.38) 3.43 (0.42) 3.75 (0.47) 
Factor 2 0.00 (0.63) -4.03 (0.58) 2.22 (0.56) 
Data shown as mean (SD) unless noted otherwise. 

Table 3. Linear regression evaluating the association 
 

between class and factors with Y 
 Est (SE) p-value 
Class   <0.01 
  1 15.5 (0.3)  
  2 -0.8 (3.5)  
  3 43.1 (5.3)  
Factor 1 class 1 6.5 (0.8) <0.01 
Factor 1 class 2 4.6 (0.9) <0.01 
Factor 1 class 3 1.4 (1.4) 0.32 
Factor 2 -4.3 (0.4) <0.01 

Adjusted R2 = 0.80 

Figure 1. Y versus Factor 1 with class indicator 

Figure 2. Y versus Factor 2 with class indicator 
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Data set 2: 
Table 4. Class-invariant parameters in the 
partially invariant 2-class model 

 Factor  Factor 
loadings 
Mean (SD) 

loadings 
Mean (SD) 

 Factor 1  Factor 3 
X4 1.00 (0) X13 1.00 (0) 
X3 1.01 (0.01) X12 0.95 (0.02) 
X5 1.11 (0.02) X9 0.93 (0.07) 
X14 0.27 (0.02) X7 0.91 (0.06) 
X8 0.34 (0.03) X2 0.91 (0.10) 
X6 0.27 (0.04) X1 0.80 (0.09) 
X2 0.09 (0.03) X14 0.32 (0.07) 
X11 0.12 (0.06)   
X7 0.06 (0.02)   
 Factor 2   
X10 1.00 (0)   
X11 0.96 (0.04)   
X9 0.50 (0.07)   
X7 0.45 (0.07)   
X8 0.76 (0.10)   
X6 0.73 (0.12)   
X14 0.39 (0.08)   
X2 

 

-0.19 (0.08)   

Table 5. Characteristics of the 2-class partially invariant model 
 Class 1 – 

(n=281) 
Low Class 2 - 

(n=219) 
High 

Observed data: 
Y 3.5 (0.4) 4.4 (0.5) 
Z1 1.9 (1.6) 2.2 (1.6) 
Z2 20.8 (21.8) 40.7 (22.7) 
Z3=1, n(%) 228 (81%) 28 (13%) 
X1 0.95 (0.70) 1.12 (0.69) 
X2 -2.24 (0.75) -1.96 (0.75) 
X3 0.81 (1.37) 1.99 (1.18) 
X4 1.82 (1.34) 3.02 (1.16) 
X5 -0.04 (1.55) 1.28 (1.39) 
X6 0.57 (0.98) 1.31 (0.96) 
X7 1.22 (0.52) 1.46 (0.56) 
X8 2.33 (0.93) 3.17 (0.88) 
X9 1.22 (0.56) 1.45 (0.54) 
X10 3.00 (0.74) 3.32 (0.72) 
X11 5.04 (0.76) 5.38 (0.75) 
X12 0.43 (0.34) 0.54 (0.34) 
X13 0.51 (0.34) 0.62 (0.35) 
X14 1.03 (0.67) 1.67 (0.61) 
Model estimated: 
Factor 1 1.73 (1.33) 1.67 (1.15) 
Factor 2 0.41 (0.55) 0.63 (0.55) 
Factor 3 0.03 (0.32) -0.24 (0.33) 
Data shown as mean (SD) unless noted otherwise. 

Table 6. Linear regression evaluating the 
association between class and factors with Y 

 Est (SE) p-value 
Class   <0.01 
  1 3.30 (0.04)  
  2 4.27 (0.04)  
Factor 1 0.08 (0.02) <0.01 
Factor 2 0.20 (0.04) <0.01 
Factor 3 class 1 -0.04 (0.08) 0.61 
Factor 3 class 2 0.24 (0.09) <0.01 
Z3 -0.21 (0.05) <0.01 

Adjusted R  = 0.58 2

Figure 3. Y versus Factor 1 with class indicator 

Figure 4. Y versus Factor 2 with class indicator Figure 5. Y versus Factor 3 with class indicator 
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22. Dimension Reduction for Chemical Exposure Risk Assessment 
Presenting Author:  Jeffrey Switchenko 

Organization: Emory University 

Contributing Authors:  Jeffrey M. Switchenko, Lance A. Waller, and P. Barry Ryan 

Abstract:  

Data: The chemical mixture simulated data (Dataset #1) is considered data from a prospective cohort 

study, where the outcome cannot cause the exposure, and correlations between exposure variables can 

be thought of as caused by common sources or modes of exposure. The mixture simulated data for 

Dataset #2 involves an environmentally relevant complex correlation pattern, intended to represent 

data from a cross-sectional study of 14 biomarkers from biomonitoring data potentially associated with 

a biomarker of effect. The real world data come from a prospective pregnancy and birth study. 

Exposures include polychlorinated biphenyl congeners (PCB), polybrominated diphenyl ether (PBDE), 

and organochlorine pesticides, and the outcome is the Mental Development Index of the Bayley Scale of 

Infant Development-II. 

Motivation for methodology: In selecting statistical methods, we plotted the outcome data variable Y 

vs. each exposure data variable (X1-X7 for Dataset #1, X1-X14 for Dataset #2, and the 14 PCBs, 4 PBDEs, 

and 4 organochlorine pesticides for the real world dataset), and stratified these plots by the available 

covariates: Z for Dataset #1, Z1-Z3 where Z1 and Z2 were dichotomized at their median value for Dataset 

#2, and for the real world data, child’s gender, maternal age at delivery, education, race, and smoking 

status during pregnancy. Correlation plots were also produced.  

For Dataset #1, we noticed that Z completely delineates X1 (Figure 1), and Y vs. X2, X3, and X4 appear to 

add noise to the original Y-X1 relationship. For Y vs. X5 (Figure 1), Z appears to separate the values of Y, 

and similar patterns were discovered for Y vs. X6 and X7. What follows is an attempt to understand the 

relationship between Y and the X’s, while both controlling for Z and assessing interaction. For Dataset 

#2, we noticed that the dataset contained a large number of exposure variables and confounders, which 

could have an association with each other and the outcome variable. Based on scatterplots, it was clear 

that Z1 did not affect the relationship between Y and each X, and it was not considered a confounder. Z2 

and Z3 appeared to influence some of the relationships, while several X’s had nearly zero correlation 

with Y. In addition, it was clear that X3, X4, and X5 were all strongly correlated with one another (r>0.94, 

p<0.001), with X3 and X4 nearly identical. We chose a method which can handle classification of an 

outcome variable, while minimizing the amount of model error. For the real world data, we noticed the 

high number of exposure variables, most of which were highly correlated with one another. In addition, 

several outlying and influential points were discovered, primarily contributed by two individuals. We 

chose a method to reduce the high data dimensionality, and checked results with and without outlying 

points. 

Methods: For Dataset #1, each exposure data variable was fit in a linear regression model with Z and its 

interaction with Z. Significant interaction terms were included in a multivariable weighted least squares 
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(WLS) analysis, where the regression was weighted by squared residuals to limit observed 

heteroscedasticity. The weighted least squares function is minimized when estimating the model 

parameters. Non-significant terms were removed in a backward selection process using a removal 

criteria of 0.05. For Dataset #2, given the number of variables and confounders, we chose to implement 

a classification and regression tree (CART) analysis to present a snapshot of the relationship of the data 

variables relevant to the outcome, and visualize the important associations. The “leaves” on the bottom 

of the tree indicate the estimated value of Y for the combination of true/false variable statements listed 

above them. For the real world data, we chose a principal components regression (PCR) approach for 

reducing the number of dimensions in the exposure data. MDI was fit as a function of the exposure 

principal components with the largest variability within the data along with covariates and interactions 

between the exposure principal components and covariates. Only significant terms remained in the 

model. 

Results: In Dataset#1, of the 7 initial exposure variables, X1, X2, X4, X5, and X7 contribute to the 

outcome, while X3 and X6 do not. For X1 and X5, the amount of contribution depends on Z. If Z=0, each 

unit increase in X1 results in a 5.78 increase in Y, controlling for the other model variables; if Z=1, each 

unit increase in X1 results in a 2.86 increase in Y. X1 and X5 interact with Z, such that the relationship 

between X1 or X5 and Y is modified by the presence of Z, controlling for the other exposure variables. 

The root mean square error is 1.01, and the adjusted R-squared value is 0.914, indicating a very good fit 

to the data. In Dataset #2, we find complex relationships given the exposure variables X1-X14 and 

confounders Z1-Z3. Of the 14 initial exposure variables, X3, X6, X8, X10, X12, X13, and X14 contribute to 

the outcome. X1, X2, X4, X5, X7, X9, and X11 do not contribute. The contribution is based on the 

regression tree listed above: If Z3=1, X3>0.826, and Z2>49.035, then the estimated value of Y is 3.995. 

The residual mean deviance is 0.180 and the root mean square error is 0.424. For the real world data, 

the PCB variables loaded evenly into the first principal component factor (PC1), which was the only 

significant exposure variable in the regression model. We found a significant interaction between PC1 

and mother’s age at delivery as well, and the R-squared value was 0.22. This did not differ when 

removing the outlying points. 

Discussion: We have described the relationship between each outcome and each exposure variable, 

controlling for known covariates, identified strong patterns and relationships between certain exposure 

variables and an outcome in a classification scheme, and reduced the dimensionality of a large exposure 

dataset. However, it is possible that a structural equation model approach could provide a more 

comprehensive approach to identifying appropriate latent exposure variables and relationships with the 

outcomes, and could provide an alternative approach to analyzing our data. 
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Figures and Tables: 

 

Dataset #1: 

𝐸(𝑌) =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋4 + 𝛽4𝑋5 + 𝛽5𝑋7 + 𝛽6𝑍 + 𝛽7𝑋1𝑍 + 𝛽8𝑋5𝑍 

Weighted sum of squares =  ∑ 𝑤𝑖(𝑦𝑖 − 𝑦𝑖̂)
2
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Dataset #2: 

 

 

 

 

Variable Estimate 95% confidence interval 

X1 – Z=0 5.783 (4.159, 7.408) 
X1 – Z=1 2.864 (2.346, 3.383) 
X2 2.122 (1.088, 3.156) 
X4 -0.947 (-1.297, -0.596) 
X5 – Z=0 -3.330 (-3.705, -2.955) 
X5 – Z=1 -4.007 (-4.364, -3.650) 
X7 3.040 (2.738, 3.342) 

Equation 1 (top left): Equation of Y given X’s and Z, 

and weighted sum of squares function to minimize. 

Table 1 (middle left): Estimates of Y given a 1-unit 

increase in X, yielded from the WLS analysis.  X1 

and X5 depend on Z.  95% CIs also provided. 

Figure 1 (bottom left): Scatterplots of Y vs. X1 and 

X5, stratifying by Z.  Z=0 is denoted in black, and 

Z=1 is denoted in red.  Each strata results in 

differing slopes, leading to a significant interaction. 

 

 

Figure 2: Regression tree 

resulting from a model which 

included X1-X14 as well as Z1-

Z3.  Only relevant exposure 

biomarker variables and 

confounders are included in 

the final tree model. 
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Real world data: 

 

 

  
 

 
 

Figure 3: Mental development 

index vs. principal component 

with most variation (PC1), 

stratified by mother’s age (with 

and without outliers) 

 

Figure 4: Standard deviations 

of 22 principal components 

from 22 exposure variables, 

scaled as a proportion of the 

largest standard deviation.  0.4 

chosen as cut-off for PCs 

containing largest share of 

variability in exposure data. 
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23. Set-based Interaction Tests for High-Dimensional Environmental 

Exposome Data 
Presenting Author:  Sandra Taylor 

Organization: University of California, Davis 

Contributing Authors:  Sandra L. Taylor, Kyoungmi Kim, and Irva Hertz-Picciotto 

Abstract:  

Background: Environmental epidemiological studies seek to identify compounds that contribute to 

health outcomes and quantify the impacts of exposure. Exposure data often consists of large numbers 

of correlated variables that may have substantial overlapping effects but only small unique effects of 

each on the outcome. Discerning exposure effects under these circumstances is challenging and further 

complicated by confounding factors.  

Methods: We propose a strategy to identify an optimum subset of exposures that together explains a 

high proportion of the variability of the outcome, and to quantify the unique effects of exposures singly 

and jointly using both non-linear and interaction terms. Our approach is outlined in Figure 1. We 

normalize all continuous variables to mean 0 and variance 1 to quantify the effects in a standardized 

metric across different exposures. We separate exposures and confounders into two sets based on their 

correlation (positive or negative) with the outcome. Variables in each correlation set, wherein variables 

act similarly to either increase or decrease the outcome, are potentially redundant with each other to 

varying degrees. We therefore conduct step-wise variable selection within each set to identify the 

exposures that extract maximum information about the outcome and avoid redundancy. We use 

likelihood ratio tests to sequentially add linear main effect terms to a model, selecting the predictor 

yielding the largest change in likelihood among significant (p < 0.01) predictors. Once main effect linear 

terms are identified independently in each set, we combine the two sets and add two-way intra- and 

inter-set interactions to the model using the same process. To capture non-linear effects, we then 

evaluate higher order polynomial terms of the main effects. Finally, we use the ‘change-in-estimate’ 

(>10%) criterion to assess excluded variables as potentially important confounders and select a final 

model in consideration of redundancy among the variables, while balancing the goals of parsimonious 

prediction and obtaining least biased estimates for each term. The final model identified through this 

process is the joint dose-response function and allows estimation of the outcome as a function of the 

exposure mixture with consideration of confounders and effect modification.  

To quantify the contribution of each predictor, we propose two novel metrics. To estimate the relative 

contribution of each term to the total variability explained by the final model, we calculate the 

incremental change in the log likelihood (Δtermj) for each term when this term is added to the model 

containing all other predictors in the final model; we then calculate the percent contribution of each 

term j as %termj = Δtermj/∑jΔtermj. Because variables can be involved in multiple terms (e.g., 

interactions), we also calculate the percentage of the total variability that each individual predictor 

contributes to the final model (%varj) in an analogous manner. We use 1,000 bootstrap samples to 
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evaluate the stability of the predictors selected in the final model and to generate confidence intervals 

for %termj and %varj. 

Results: We demonstrate our method on two simulated data sets. In Data Set 1, 5 exposures (X1-X4, X7) 

and a confounder (Z) were positively correlated with the outcome Y; 2 exposures (X5, X6) were 

negatively correlated. Within each of these sets, X1-X3, and X5 and X6 were strongly correlated (ρ > 

0.65) and provided redundant information about the outcome. Our approach identified 3 main effects 

(X1, X5, X7) and that of a confounder Z, including non-linear terms for X5 and X7, and two interactions 

Z:X1 and X5:X7. X2, X3, X4 and X6 did not appreciably explain variability in Y beyond Z, X1, X5 and X7. 

With the exception of the Z:X1 interaction, predictors in the final model were selected in greater than 

90% of the bootstrap samples. Total R2 for the final model was 0.94; Z accounted for about 30% of the 

variability explained by the model, followed by X5, X7 and X1 (Table 1). The Z:X1 interaction indicates 

that Z is an effect modifier of X1 resulting in differential effects of X1 on Y depending on exposure to Z. Y 

has a complex relationship with X5 and X7 as demonstrated by the higher order and interaction terms 

for these variables (Figure 2). Importantly, the inter-set interaction of X5 and X7 indicates that X5 has a 

buffering effect that absorbs the positive impact of X7 on Y when working jointly.  

Finally, we considered each of the omitted exposures as potential confounders of exposures retained in 

the final model. We found both X2 and X4 to confound the association of X1 with Y in the final model. 

No other omitted exposures had confounding effects and no additional predictors in the final model 

were affected. However, X2 was highly correlated with X1, but minimally correlated with the outcome 

when conditioned on X1; thus we opted to omit it as redundant to X1. Ancillary information would be 

needed to ascertain which, if either, is causal. With regard to X4, based on the a priori project 

information and given the project objective of parsimonious prediction rather than identifying the most 

unbiased associations for each of the individual factors, we also omitted X4 from the final model. 

Applying our method to Data Set 2 was similarly successful in identifying and quantifying the 

contributions of exposures and confounders to outcome variability. 

Conclusion: Our approach was effective at identifying and quantifying the unique and joint contribution 

of the primary exposures to variance in the outcome, and achieved extremely high explanatory power 

for Data Set 1. Advantageous aspects of our approach are that it is scalable to high-dimensional 

exposome data, easily incorporates confounders, flexibly incorporates interactions and higher order 

terms, is intuitively interpretable, and can be readily implemented using standard statistical software. 
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Table 1.  Results of Variable Selection for Data Set 1: Contribution of each term and variable to the model and 
predictable variance in the outcome Y 

Variable  
(set mode) 

Predictor term 
in model 

Beta 
Estimate* 

Contribution to 
Predictable 
variance by 
each term 
(𝚫𝒕𝒆𝒓𝒎𝒋) 

Relative % 
Contribution 

to predictable 
variance

(%𝒕𝒆𝒓𝒎𝒋) 

Total effect of 
each 

variable
 (𝚫𝒗𝒂𝒓𝒋) 

Relative % 
Total effect of 

each 
variable

(%𝒗𝒂𝒓𝒋) 

Z  
(+) 

Z 0.956 157.264 
23.9 

[19.1, 28.5] 
275.04 

30.9 
[28.0, 33.6] 

X1  
(+) 

X1 0.532 41.134 
6.3 

[4.1, 8.8] 
126.79 

14.2 
[11.4, 17.0] 

 Z:X1 -0.250 8.872 
1.3 

[0.4, 2.7] 
- - 

X7 
(+) 

X7 0.420 191.856 
29.2 

[24.6, 33.0] 
231.50 26.0 

[23.3, 28.8] 

 
X72 -0.195 39.551 

6.0 
[3.9, 8.4] 

 
X73 0.031 11.754 

1.8 
[0.6, 3.5] 

X5 
(-) 

X5 -0.386 188.514 
28.7 

[25.0, 32.5] 
256.78 28.8 

[26.4, 31.4] 

 X52 0.047 11.996 
1.8 

[0.7, 3.5] 

 X5:X7 -0.041 6.065 
0.9 

[0.2, 2.1] 
- - 

*A beta estimate for a predictor indicates the expected increase of decrease in the outcome, in SD units, given a one SD increase in 

predictor with all other predictor held constant. 

 

 

Figure 2. Relationship of Y to X5 and X7. 
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24. Analyzing Mixtures in Epidemiology Data by Smoothing in Exposure 

Space 
Presenting Author:  Veronica Vieira 

Organization: Boston University 

Contributing Authors:  Thomas F. Webster and Veronica M. Vieira 

Abstract:  

Background: Analysis of the health effects of mixtures is an important topic in both environmental 

epidemiology and toxicology, although the two fields approach the problem differently.1  We combine 

ideas from both2 to analyze the synthetic data sets posted by NIEHS. Briefly, consider the joint 

distribution of exposures as defining an exposure space; the outcome represents a surface in this space. 

Examination of the shape of the levels sets—contours or isoboles as they are called in toxicology—

provides information regarding interaction (or not) between exposures. We regard our method 

primarily as an exploratory data analysis approach that can be used to examine types of “interactions” 

between exposure variables. 

Methods: Suppose that each record of the epidemiologic data set contains a health outcome Y, a set of 

p exposures X, and covariates Z. Our basic approach uses generalized additive models (gam) to examine 

the data in exposure space: 

g[Y] = S[X] + γ’Z (1) 

where g[.] is a link function (as in generalized linear models) and S[X] is a smooth function of the 

exposures. As the outcomes in both synthetic data sets appear to be normally distributed continuous 

data, we use the identity link. However the general method is also applicable to binary and other types 

of outcome data. Here  we use loess for the smooth function, choosing the degree of smoothing (span) 

by minimizing the AIC, representing a tradeoff between bias and variance. We have used this approach 

previously for mapping geographically distributed data in two dimensions.3  We can deviate from the 

notation above by including within the smoothing term the non-linear parts of the function (exposure or 

covariates, as needed), and placing linearly modeled variables outside. 

Following smoothing, we take 2 dimensional slices of the multi-dimensional object, mapping the value 

of the outcome using a color scale and drawing the isoboles. Parallel straight line isoboles (usually of 

negative slope) imply that the variables can be modeled using toxic equivalent factors (TEFs). For 

example, the 2 variable joint dose response function f[X1, X2] can then be expressed as f[X1, X2] = 

h[w1X1 + w2X2] where wi are constants (that need not sum to 1) and h[.] is the dose-response function 

describing the outcome as a  weighted sum of the exposures. The relative potency (TEF) of the 

compounds can be estimated from the slopes of the isoboles. The shape of the function h[.] can be 

examined by plotting outcome as a function of w1X1 + w2X2 along one dimensional cross-sections or 

rays. Other isobole shapes are informative about “interactions,” defined in the toxicological sense of the 

word relative to concentration addition, CA.1  For example, negatively sloped isobles that bow 
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downward (positive second derivative) are supra-linear (“synergistic”) relative to concentration 

addition.4  Positively sloped isoboles (straight or curved) are types of “antagonism” where the 

compounds are acting in opposite directions. There are other types: e.g., horizontal or vertical isoboles 

imply a variable does not contribute to the outcome. 

As currently implemented in R, our method can only smooth up to 8 dimensions before crashing. We 

also examined histograms and correlations among variables and used multivariable regression and 

stepwise regression for initial exploration of the data and for initial variable selection. As a result, we 

may have failed to pick up some variables. 

Results: The two synthetic data sets were quite different as discussed below. We begin with results for 

data set #2 which has more variables but is simpler in other ways than data set #1. 

Dataset #2: Initial analysis of dataset 2 suggested that the exposures were multivariate normal and the 

outcome was normal. Scatterplots showed no obvious non-linearities. There were high degrees of 

correlation, >0.90, between some exposure variables (x3-x4-x5 and x12-x13), making it difficult to 

separate their effects; it also produced high variance inflation factors (VIFs) in multivariable regression. 

We therefore did an initial step- wise regression (acknowledging that this approach is imperfect), 

pruning the data set to the following 8 predictors: x1, x4, x6, x10, x12, x14, z2, z3. Inclusion of quadratic 

terms or binary cross-products did not change results much, but suggested a non-linearity involving z2. 

Initial smoothing suggested treating z3   (binary covariate) as a linear predictor. We jointly smoothed on 

the remaining 7 variables (x1, x4, x6, x10, x12, x14, z2), and adjusted for z3 outside the smooth. The 

results suggest that all of these exposure variables (x1, x6, x10, x12, x14) are TEF with respect to each 

other—i.e., non-interactive from the toxicologic (CA) point of view—and are positive linear predictors of 

the outcome (e.g., Fig 1). Potencies relative to x1 were 0.6 for x4, 1 for x6, 1.5 for x10, 2.6 for x12, 1.1 

for x14. Removing the binary covariate z2 from the smooth produced close to the same results. The 

smooths suggest non-linear effects of z2, but it is a nuisance variable. Multivariable regression on these 

variables (including z3 and z33) produced a model with Rsq=0.51 and the following beta coefficients for 

the exposures: β1=0.059 (p=0.06), β4=0.039 (p=0.2), β6=0.059 (p=0.04), β10=0.087 (p=0.009), β12=0.16 

(p=0.03), β14=0.067 (p=0.15). Omitting z33  produced similar results. Ratios of these beta coefficients 

are similar to the TEF estimates above. 

Dataset #1: Initial analysis of dataset 1 suggested that the exposures were log normal and the outcome 

was normal; Z was binary. Preliminary stepwise regression identified exposures X1, X2, X4, X5, and X7 as 

important predictors, while X3 and X6 did not contribute to the outcome. X1 and X2 were highly 

correlated and inclusion of both produced higher VIFs in multivariable regression. A multivariable 

regression of log transformed exposures X1, X4, X5, X7, the quadratic terms for X1, X5, and X7, 

interaction terms for X7 with X1 and X5, and controlling for Z produced the most parsimonious model 

with an R-squared of 0.95. The multivariable regression of X1, X4, X5, X7 (not transformed) had an R-

squared of 0.91. We therefore jointly smoothed exposures X1, X4, X5, X7, with Z modeled parametrically 

(X2 was omitted because of high correlation with X1). We identified the   following interactions: For X1 

and X7, the model produced negatively sloped isoboles that bow downward (positive second derivative), 

suggesting that the interaction between these two exposures is “synergistic.” (Fig 2). The isoboles for X5 
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and both X1 and X7 were positively sloped, with the predictions highest for low values  of X5. This 

suggests that X5 is acting in the opposite direction than X1 and X7 (one type of antagonism). The 

isoboles for X4 and X5 were negatively sloped, with outcome decreasing as both exposures increased. 

This indicated that X4 and X5 are acting in the same direction; X4 has an antagonistic interaction with X1 

and X7. 

Conclusions: Our approach is designed for exploratory data analysis of mixtures in epidemiology. We 

identified cases in the two data sets where variables appeared to be TEF with respect to each other, 

antagonistic or synergistic (relative to concentration addition). Further modeling could be used to refine 

these results. The use of smooths and toxicological concepts provides more information than standard 

methods such as inclusion of cross- product terms in regressions. Our conclusions on interactions (or 

lack thereof) are not statistical tests. Our method has limitations with the number of variables it can 

currently jointly smooth and is not designed as a  data reduction tool or to handle very highly correlated 

data. 
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Fig. 2. Cross-section isoboles of X1-X7 

from Data Set #2 show synergism 

 

Fig 1. Cross-section isoboles of x1-x6 

from Data Set #1 show a TEF pattern 
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25. Variable Selection and Multivariate Adaptive Spline Assessments to 

Investigate Effects of Chemical Mixtures in a Prospective Cohort 

Study of Mother-Child Pairs 
Presenting Author:  Katrina Waters 
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Abstract:  

Statistical Modeling Approaches Considered: Approaches for statistically assessing the health effects of 

environmental chemical mixtures in an epidemiology study should ideally be chosen based on 

knowledge of the underlying subject matter and variables in the data. However, this was not possible for 

the two test data sets (TDSs). It was also not possible to consider the combined mixture model [1], 

which includes the effects of chemicals with a common mechanism (via concentration addition) and 

chemicals with different mechanisms (via independent joint action).  

Several statistical modeling methods were applied to the TDSs, including variable selection regression 

(VSR), regression trees, random forests, partial least squares, neural networks, support vector machines, 

and multivariate adaptive regression splines (MARS). No method was clearly superior for either of the 

TDSs. For each TDS, the VSR and MARS results are summarized, with VSR serving as a baseline. The VSR 

approach used best-subsets and stepwise regressions, with several diagnostics used to select models. 

Terms retained in the models had p-values <0.01. The VSR analyses were performed using the Minitab 

17 statistical package. MARS is a nonparametric regression approach that identifies important variables 

and uses splines to model the relationships between the predictor variables and a continuous outcome 

variable[4]. Up to cubic splines can be used, but linear splines were used for these analyses. MARS 

analyses were conducted using the earth package[5] in the R programming language.  

Stratification by the binary covariate was considered for each TDS to assess whether the relationships 

with the remaining predictor variables were consistent for the two strata. Models were validated using 

10-fold cross-validation (CV) to assess over-fitting of the data and guide model selection.  

Results for Data Set 1  

This data set containing 500 records was described as a prospective cohort study, with a continuous 

outcome (Y), seven continuous exposure variables (X1-X7), and a binary covariate (Z). Notable pairwise 

correlations were observed involving exposure variables in the groups (X1, X2, and X3) and (X5, X6). Log 

transformations of the exposure variables simplified their distributions, but did not result in any 

measureable gains to model fits or impact important model terms chosen by the VSR and MARS 

approaches. Stratification on the binary Z was investigated for the VSR and MARS approaches, but there 

was little difference in the important variables and model fits. Hence, the modeling results for the non-

stratified data set without log transformations of X1-X7 are summarized.  
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The VSR and MARS approaches yielded models involving X1, X2, X4, X5, X7, and Z with X3 and X6 not 

being selected. The VSR model had R2=0.945 and contained 12 terms (Table 1), including two squared 

terms and three interaction terms (the latter indicating effects beyond an additive model). Coefficients 

of interaction terms (Table 1) that are negative (positive) indicate a joint effect that is lower (higher) 

than would be expected in an additive model. The predicted vs. measured (PvM) plot for the VSR and 

MARS models are in Figure 1.  

The MARS approach produced a first-degree model with 13 terms (Table 2) and R2=0.946. Interactions 

were considered, but did not contribute to the model fit. The VSR and MARS models had good CV 

performance. The MARS CV showed potentially similar performance among a family of models 

(containing from 6‒14 terms) that could be explored given information about the variables. A bootstrap 

method was used to investigate variable importance in the MARS model; the aggregate results agreed 

with the results from the full data set. The bootstrap results also indicated volatility in variable 

importance, which is likely due to strong correlations involving certain exposure variables. Individual 

variable effects based on the fitted MARS model are shown in Figure 2. Caution is needed in interpreting 

individual effects given some stronger correlations.  

Results for Data Set 2  

This data set containing 500 records is considered as a cross-sectional study, with a continuous outcome 

variable (y), 14 continuous exposure biomarkers (x1-x14), two continuous covariates (z1, z2) and a 

binary covariate (z3). Two groups of biomarkers [(x3, x4, x5) and (x12, x13)] had very strong pairwise 

correlations, with many other pairwise correlations being relatively strong (including several pairs 

involving z2). Both the VSR and MARS approaches yielded notably different results when the data were 

stratified by z3, so modeling results are presented separately for z3=0 and z3=1.  

The VSR model results for the two values of z3 are listed in Table 3 with the PvM plot in Figure 3. 

Although second-degree models were considered, they provided only marginal improvements to model 

fits. Hence, the models in Table 3 include only first-degree terms.  

The MARS models were selected based on CV results (see example in Figure 4) after CV showed that the 

original MARS models with total R2=0.623 were over-fitting. Results for the CV models are summarized 

in Tables 4 and 5, with separate R2 values of 0.472 (z3=0) and 0.245 (z3=1) and a total data set 

R2=0.538. The PvM plot (Figure 5) suggests that values of z3 may represent two different groups in the 

population, with the outcome variable tending to be larger for z3=0. Variable importance was 

investigated for each model with the bootstrap method, which revealed very high volatility, particularly 

among highly correlated variables.  

VSR and MARS selected similar biomarkers of importance with a few minor differences (see Tables 3, 4, 

and 5). For the z3=0 stratum, VSR selected x5 while MARS selected x3; these variables are highly 

correlated, which may result from a common mode of exposure. For z3=1, VSR selected an additional 

term x14 as compared to MARS. Neither VSR nor MARS provide evidence of important interactions 

beyond an additive model.  
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Summary/Conclusions: TDS1 was modeled effectively using an assortment of methods, although 

interpreting results must be done with caution because of certain highly correlated exposure variables. 

TDS2 was more difficult to model, with lower R2 values and over-fitting issues. The MARS models were 

selected using CV to avoid over-fitting. The MARS methodology provided a very flexible approach 

without assuming a model form. It also provided important information regarding individual variable 

effects. 
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Table 1. Summary of VSR Model Fit 
for TDS1 

Model Coefficients 
 Intercept 
X1 
X2 
X4 
X5 
X7 
Z 
(X5)2 

 (X7)2

X1*X2 
X1*X7 
X5*X7 

 11.766 
4.473 
4.450 

-0.959 
-5.179 
7.370 

10.836 
0.535 

-1.179 
-1.487 
0.464 

-0.446 
R2  = 0.945 CVR2 = 0.942 

 
Table 2. Summary of MARS Model Fit for 

TDS1 Limited to Main Effects 
Model Coefficients  
 (Intercept) 
Z 
h(1.63282-X1) 
h(X1-1.63282) 
h(1.08821-X2) 
h(3.52697-X4) 
h(X4-3.52697) 
h(0.52139-X5) 
h(X5-0.52139) 
h(X5-1.92941) 
h(0.70711-X7) 
h(X7-0.70711) 
h(X7-2.16572) 

  23.0640774  
10.5397227  
-4.1346103  
2.9925117  

-3.7072375  
0.7616012  

-3.2743707  
6.9418541  

-4.5446649  
2.3178779  

-10.4152238  
2.8369383  

-2.2637288  
Importance: Z, X5, X7, X1, X4, X2 
GCV   
GRSq 

7.031618       
0.9404181    

RSS   3173.018        
  RSq 0.9460116 

 

 
Figure 1. Predicted versus Measured Plot for 

VSR and MARS Models Fit to TDS1 

 
Figure 2.TDS1 MARS Model Variable Effects 

with Other Variables at Median Values 
 
 
Table 3. Summary of VSR Model Fit for TDS2 

 Coefficients 
Model z3 = 0 z3 = 1 
 Intercept  3.5453  3.1698 
x5 0.0881 ‒ 
x6 0.1165 ‒ 
x12 0.5936 ‒ 
x14 ‒ 0.1351 
z2 0.0067 0.0084 
Combined 
R2 = 0.539 
 

R2 = 0.452 
CVR2 = 0.412 

R2 = 0.276 
CVR2 = 0.260 

 

 
Figure 3. Predicted versus Measured Plot for 
VSR Models Fit to TDS2 Separately by z3 
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Table 4. Summary of MARS Model Fit for 
TDS2 z3=0 Stratum Limited to Main Effects 

    

Model Coefficients  
   (Intercept) 4.5771104  
h(x3-3.12469) 0.4248934  
h(x6+0.33975) 0.1556095  
h(1.02463-x12) -0.5901474  
h(60.234-z2) -0.0091927  
Importance: z2, x12, x6, x3 

GCV 0.2066718  RSS 46.77643         
GRSq 0.4358774  
 

   RSq 0.4724098 

 
 

Table 5. Summary of MARS Model Fit for 
TDS2 z3=1 Stratum Limited to Main Effects 

Model Coefficients  
 (Intercept)   3.16634617  
h(z2+5.764) 0.01167121  
Importance: z2 
GCV 0.2057097     RSS 51.43466        
GRSq 0.2331271    RSq 0.2451093 
 
 

 
Figure 4. CV of TDS2 MARS Model Fit to z3=1

 
Figure 5. Predicted versus Measured Plot for 
MARS Model Fit to TDS2 Separately by z3 
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26. Bayesian Non-Parametric Regression for Multi-Pollutant Mixtures 
Presenting Author:  Ran Wei 
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Abstract:  

Many modern epidemiological studies simultaneously investigate the effect of several exposure 

variables. The statistical challenge is to identify the subset of harmful exposure variables and to estimate 

the joint effects of multiple exposures.  In order to choose an appropriate subset of variables related to 

the outcome measurements, we propose a Bayesian nonparametric regression model with continuous 

shrinkage priors for variable selection and model prediction. Our general approach is to decompose the 

dose-response function as the sum of nonlinear main effects and two-way interaction terms, and apply 

novel Bayesian variable selection methods to identify important exposures and interactions. The 

advantage of this approach is that the results are easily interpretable because the signal is allocated to 

individual exposures and synergistic pairs. The primary challenge when fitting this standard additive 

model is that the number of parameters explodes even for a moderate number of exposure variables 

leaving the analysis susceptible to over-fitting. Our approach to overcoming this challenge is to apply a 

prior that aggressively shrinks many of the terms towards zero, thus mitigating the noise of including 

unimportant exposures and allowing us to isolate the effects of the important variables. Unlike ad-hoc 

screening procedures like forward/backward selection, we accomplish variable selection within a single 

Bayesian hierarchical model. This permits valid statistical inference while properly accounting for all 

sources of uncertainty, including the uncertainty about the subset of variables to be included. The 

proposed method is applied to two simulated datasets, and we find evidence in both that including 

interactions between exposures improves predictive performance. 
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Model description: We assume the health response Y is normal with mean f(X1, . . . , Xp)
and variance σ2, where X1, . . . , X p are the explanatory variables. For notational convenience, 
we include both the exposure variables of interest and confounders in the p explanatory
variables. The joint dose-response functionPis decomposePd as the sum of main-e↵ect and
interaction functions, f(X1, . . . , Xp) = C+ p

j=1 fj(Xj)+ l<k flk(Xl, Xk); the main e↵ects
include non-linear e↵ects for both confounder and exposures and the second-order terms
include both interactions between confounder and expoPsures, pairs of exposures, and pairs
of confounders. After basis expansion, such as fj(X) = m

k=1 Bk(X)✓jk, the unknown coe�-
iid

cients are assigned priors ✓jk ⇠ N(0, σ2λj ), for k = 1 , . . . ,m . We select continuous shrinkage
priors for the variance components, as described below.

For the main e↵ects, we use B-spline basis functions for the Bk with m = 5; for interac-
tions we use the outer product of B-spline functions. This results in many terms, and thus
variable selection is required. Exposures are completely eliminated only if the entire curve fj
or flk is zero. The key observation is that this is equivalent to setting the variance parameter λj 

(or λlk for interactions) to zero. We can conduct model selection by shrinking the values
of λj through a continuous shrinkage prior. We let λj = λ0φj and λlk = λ0φlk, where λ0

controls the overall variance and �j Pis the prPoport
�
ion of variance allocated to main e↵ect j,

with the proportions adding to one, j �j + l<k lk = 1. The proportions � are then given
a Dirichlet prior that encourages most of the proportions to be near zero and a select few to
be large. The main e↵ects of confounder variables are not included in the variable selection
model, and are given separate variance parameters. Standard Markov chain Monte Carlo
techniques are used to implement this approach.

Figure 1: Results for simulated data set 1: Posterior distribution of (from left to right) the 
variance proportions φ for the main e↵ects, confounder ⇥ exposure interactions, exposure ⇥ 
exposure interactions, and selected main e↵ect curves fj (X).

Simulated data set 1. There are seven predictors and one binary confounder variable. 
Figure 1 plots the posterior of the φ proportions and selected main e↵ect functions. Clearly,

the main e↵ects for X1, X2, X5 and X7 and interactions between X1⇥X2 and X2⇥X7 con-
tribute to the outcome. The left middle plot also demonstrates the significant contribution
of the binary confounder through interaction with X1. The main e↵ect functions plotted on
the right of Figure 1 demonstrate non-linear dose-response functions.

We compared the main-e↵ect-only model with the full model with interactions using
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cross-validation. The mean square error for main-e↵ects model is 20.2 compared to 13.1 for
the full model. Also, including the interactions increased predictive R-squared from 82.8% to
88.9%. Therefore, it appears the predictions are accurate and the interactions are important.

Simulated data set 2. In simulated data 2, there are 14 chemical exposures, two continuous
confounding variables and a binary confounding variable. Here we include main e↵ects for all
exposures and confounders, interactions between the exposures and the binary confounder,
and the interactions between each pair of exposures. Figure 2 shows that the important
e↵ects do not emerge as clearly as for the first data set. The main e↵ects for X2, X4, X5

and X13 and interactions X2⇥X13, X10⇥X14, X11⇥X13 and X13⇥X14 contribute the most
to the mean response. Furthermore, the exposures with the strongest interaction with the
binary confounder are X2, X5 and X13.

Figure 2: Results for simulated data set 2: Posterior distribution of (from up left to up
right) the variance proportions φ for the main e↵ects, confounder ⇥ exposure interactions, 
exposure ⇥ exposure interactions. Selected main e↵ect curves fj (X) (from bottom left to  
bottom right).

We also performed cross validation. The mean squared prediction error was 0.35 for the
main-e↵ect-only model compared to 0.32 for the full model, and prediction R-squared is
increased from 17.2% for the main-e↵ects-only model to 22.9% for the full model. Therefore,
predictions are less precise in general for the second data set compared to the first, and the
contribution of interactions is less prominent.
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27. Modeling Environmental Chemical Mixtures with Weighted Quantile 

Sum Regression  
Presenting Author:  David Wheeler 

Organization: Virginia Commonwealth University 

Contributing Authors:  David Wheeler and Jenna Czarnota 

Abstract:  

Introduction: We present an application of weighted quantile sum (WQS) regression to model the 

association of a mixture of chemical exposures and a continuous outcome variable in two simulated 

data sets. Estimation of chemical weights and the resulting WQS index while considering the correlation 

between compounds allows us to make generalized inference about the mixture effect and identify the 

individual chemicals (‘bad actors’) most strongly associated with the outcome.  

Methods: The WQS method is constrained to have associations in the same direction for chemical 

exposures and risk, and is designed for variable selection over prediction. WQS regression estimates a 

weighted linear index in which the weights are empirically determined through the use of bootstrap 

sampling. The approach considers data with c correlated components scored as ordinal variables into 

quantiles that are reasonable to combine (i.e., all chemicals) into an index and potentially have a 

common adverse outcome. The weights are constrained to sum to 1 and be between 0 and 1, thereby 

reducing dimensionality and addressing issues associated with collinearity. For this analysis, the 

chemical concentrations were scored into quartiles denoted by qi, where qi = 0, 1, 2, or 3 for i = 1 to c. A 

total of B = 1000 bootstrap samples (of the same size as the total sample, N = 500) were generated from 

the full dataset and used to estimate the unknown weights, w, that maximized the likelihood for b = 1 to 

B for the following model 

 
0 1

1

( )
c

i i

i b

wg q   


 
   

 
 z

       [1] 

subject to the constraints 1

1
c

i

i b

w



 and 0 ≤ wi ≤ 1 for i = 1 to c. In the above equation, wi represents 

the weight for the ith chemical component qi and the term 1

c

i i

i

w q



 represents a weighted index for the 

set of c chemicals of interest. Furthermore, z denotes a vector of covariates determined prior to 

estimation of the weights, ϕ are the coefficients for the covariates in z , and g(.) is any monotonic and 

differentiable link function that relates the mean, µ, to the predictor variables in the right hand side of 

the equation. Because the outcome variables in this analysis are continuous, an identity link was 

assumed for g. 
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For each bootstrap sample, the relative strength of the test statistic for 1, the parameter estimate for 

the weighted index, was used to estimate the final vector of weights w , and the weighted quantile 

score was estimated as 1

WQS .
c

i i

i

w q



 Finally, the significance of the WQS index was determined 

using the original data set and the model 

          g(µ) = 0 + 1 WQS + z’ϕ,       [2] 

where 1 is the parameter associated with a unit (quartile) increase in the weighted sum of exposure 

quartiles (WQS index). 

Results Data Set #1: The data included seven exposure variables (X1-X7) with pairwise Spearmen 

correlations among the exposures ranging from -0.10 to 0.88. The WQS index was significantly related to 

the outcome variable (p < 0.001), and a one quartile increase in the WQS index was associated with a 

5.74 unit (95% CI: 5.07, 6.40) increase in the response (Table 1). The components of X1, X3, and X7 

received the highest estimated weights (Table 2) with w1 = 0.323, w3 = 0.147, w7 = 0.482, respectively, 

and were therefore identified as important exposures (i.e., exposures contributing to the outcome). 

Components X2 and X4 received smaller weights of w2 = 0.037 and w4 = 0.011 and therefore 

contributed little to the mixture effect. Components X5 and X6 received negligible weight (< 0.001) and 

were therefore considered to be unassociated with the outcome. The distribution of the estimated 

weights for each component is shown in Figure 1.We did not consider interactions between chemicals in 

this analysis. The adjusted r-square of the WQS model was 0.80 and the root mean square error was 

107.95. 
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Table 1: WQS model parameter estimates for data set #1. 

 

Estimate SE 95% CI p-value 

Intercept 9.83 0.44 (8.96, 10.70) <0.001 

Z 11.37 0.60 (10.21, 12.54) <0.001 

WQS  5.74 0.34 (5.07, 6.40) <0.001 

Adjusted R2 = 0.80; RMSE = 107.95 

 

Table 2: Estimated WQS chemical weights using the relative test statistic for data set #1. 

 

Estimate 

w1 0.323 

w2 0.037 

w3 0.147 

w4 0.011 

w5 0.000 

w6 0.000 

w7 0.482 
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Figure 1: Histogram of estimated weights for X1-X7 across 1000 bootstrap samples for data set #1. 

 

 

 

Results Data Set 2: The data included 14 exposures variables (X1-X14) with pairwise Spearmen 

correlations among the exposures ranging from -0.14 to 0.99. The WQS index was significant (p<0.001), 

and a one quartile increase in the WQS index was associated with a 0.30 unit (95% CI: 0.23, 0.38) 

increase in the outcome (Table 3). The most heavily weighted exposures in the index included X1, X6, 

X8, and X12 with weights w1 = 0.134, w6 = 0.190, w8 = 0.101, and w12 = 0.168, and thus contributed 

most strongly to the outcome (Table 4). Exposures X4, X10, X11, and X14 each received between 5 and 

10% of the total weight and were considered as less important variables that still contributed to the 

outcome. Finally, exposures X2, X3, X5, X7, X9, and X13 received less than 5% of the total weights, and 

therefore were considered to not contribute to the outcome. The distribution of the estimated weights 

for each component is shown in Figure 2. The adjusted r-square of the WQS model was 0.51 and the 

root mean square error was 10.16. 
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Table 3: WQS model parameter estimates for data set #2. 

 

Estimate SE 95% CI p-value 

Intercept 3.53 0.07 (3.40, 3.66) <0.001 

z1 0.01 0.01 (-0.02, 0.03) 0.606 

z2 0.01 0.00 (0.01, 0.01) <0.001 

z3 -0.60 0.04 (-0.68, -0.52) <0.001 

WQS 0.30 0.04 (0.23, 0.38) <0.001 

Adjusted R2 = 0.51; RMSE = 10.16 

 

Table 4: Estimated WQS chemical weights using the relative test statistic for data set #2. 

 Estimate 

w1 0.134 

w2 0.032 

w3 0.004 

w4 0.063 

w5 0.022 

w6 0.190 

w7 0.033 

w8 0.101 

w9 0.017 

w10 0.081 

w11 0.089 

w12 0.168 

w13 0.011 

w14 0.054 
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Figure 2: Histogram of estimated weights for X1-X11 across 1000 bootstrap samples for data set #2. 
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28. Assessing Health Associations with Environmental Chemical 

Mixtures using LASSO and its Generalizations  
Presenting Author:  Changchun Xie 

Organization: University of Cincinnati 

Contributing Authors:  Changchun Xie, Aimin Chen, and Susan M. Pinney 

Abstract:  

When there are multiple chemical exposures and some of them are highly correlated, there are two 

challenges in traditional multiple regression: 1) the number of chemical exposures could be greater than 

the number of samples; 2) multicollinearity. The situation can become more complicated when 

interactions among exposures and nonlinear effects are involved. Testing interaction between 

exposures might not be feasible due to their large number. A promising technique called the least 

absolute shrinkage and selection operator (LASSO) and its generations (least angle regression, elastic 

net, group LASSO) can be used to handle these challenges. LASSO, proposed by Tibshirani (1996), is a 

penalized least squares procedure that minimizes the usual sum of squared errors, with a bound on the 

sum of the absolute values of the coefficients. We have applied LASSO to analyze the two simulated 

datasets and the real world dataset using the R package “glmnet”. It is well known that the p-values 

from a significant test (for example, chi-squared test or F-test) designed for fixed linear models are not 

appropriate for adaptively selected models such as those in forward stepwise regression. The p-values 

from the covariance test (Lockhart et al., 2014), which accounts for the adaptive nature of LASSO 

modeling are provided using the R package “covTest”. We also suggest an approach to test interactions 

when there are many potential chemical exposures. 

Significance testing: Classic theory for significance testing in linear regression operates on two fixed 

nested models. For example, chi-squared test can be used to compute the drop in residual sum of 

squares (RSS) from regression on 𝐴 ∪ {𝑖} and 𝐴, where 𝐴 ∪ {𝑖} and 𝐴 are fixed subsets of {1,2,…,p},  

𝑅𝑖 = (𝑅𝑆𝑆𝐴 − 𝑅𝑆𝑆𝐴∪{𝑖})/𝜎2 

and compares it to a 𝜒1
2 distribution (𝜎2 is assumed to be known. If not, F-test can be used). 

Unfortunately, when 𝐴 ∪ {𝑖} and 𝐴 are not fixed subsets, the use of a 𝜒1
2 null distribution is not valid 

anymore. For example, in forward stepwise regression, we enter predictors one at a time, at each step 

choosing the predictor 𝑖 that gives the largest drop in RSS. The maximum 𝑅𝑖 will clearly be larger than 𝜒1
2 

under the null and Type I error is inflated. 

The covariance test was proposed by Lockhart et al. (2014) to account for the adaptive nature of LASSO. 

Let 𝐴 be the active set of predictors just before knot 𝜆𝑘 and suppose the predictor 𝑖 enters at 𝜆𝑘. Let 

𝛽̂(𝜆𝑘+1) be the solution at the next knot, 𝜆𝑘+1, using predictors 𝐴 ∪ {𝑖} and 𝛽𝐴̃(𝜆𝑘+1) be the solution 

using predictors 𝐴 at 𝜆𝑘+1. The covariance test statistic is defined by 

𝑇𝑘 = (〈𝑦, 𝑋𝛽̂(𝜆𝑘+1)〉 − 〈𝑦, 𝑋𝐴𝛽𝐴̃(𝜆𝑘+1)〉)/𝜎2 
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Lockhart et al. (2014) show that under the null hypothesis that the current LASSO model contains all 

truly active variables,  𝑇𝑘

𝑑
→ 𝐸𝑥𝑝(1). This null hypothesis will change at each step where the set of the 

active variables changes. The p-value from this test cannot be interpreted in the classic sense based on a 

fixed null hypothesis since this test is a conditional test.  

Results: The following summarizes the findings:  

Simulated Data Set #1: 

X1, X2, X3 are highly correlated. Log transformation was used for X1, X2, X3 and X7 due to nonlinear 

relationship with Y, based on scatter plots. We retained the original variable names. Based on 10-fold 

cross-validation, the optimal LASSO fit did not select X3 and X6. The estimated coefficients are: 

(Intercept) 24.292 

X1           3.330 

X2           0.287 

X3           0         

X4          -0.103 

X5          -3.264 

X6           0         

X7           3.363 

Z           11.372 

 

We also did our own simulations by generating our own outcome variable Y using X1-X7 and Z in Data 

Set #1. We found that LASSO can select right variables among X1, X2 and X3, which are highly 

correlated, while Random Forest (another popular method for high dimensional data) cannot separate 

X1, X2 and X3 although signals were given to one or two of the three variables. When a signal of 

interaction without main effects was given, LASSO can select the both involved variables by main effects 

when the interaction term was not in the model. When the interaction term was added in the model, 

LASSO detected the interaction and the main effects of the involved variables were gone. Based on this 

observation, we suggest testing the interactions only on the variables selected by LASSO, making it 

feasible to test interactions for many potential chemical exposures. We added the two-way interaction 

terms from all the variables selected above and re-ran LASSO.  Based on 10-fold cross-validation, the 

optimal LASSO fit detected 4 interactions and gave the following estimated coefficients:  
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(Intercept) 23.725 

X1           1.988 

X2           1.311 

X3           0          

X4          -0.405 

X5          -3.349 

X6           0         

X7           3.060 

Z           10.647 

X1X2          0         

X1X4          0          

X1X5          0               

X1X7         0 

X1z          4.265 

X2X4          0          

X2X5          0          

X2X7          0          

X2z            0          

X4X5         -0.019 

X4X7          0.028 

X4z           0          

X5X7         0          

X5z           0         

X7z           0.704 

  

The LASSO p-value from covariance test using the LASSO solution path. 

                LASSO p-

value 

Z             0.000 

X1           0.000 

X1z         0.000 

X7           0.000 

X5           0.000 

X2           0.178 

X7z          0.014          

X4X5       0.469 

X4X7       0.668    

X4            0.000         

 

Simulated Data Set #2: 

x3, x4, x5, x8, x14 and z2 are highly correlated. x12 and x13 are highly correlated. Based on scatter plots, 

no nonlinear relationships between independent variables and y were detected. Based on 10-fold cross-

validation, the optimal LASSO fit did not select x1, x2, x3, x5, x7, x13 and z1. The estimated coefficients 

are: 

(Intercept)  3.600 

x1           0           

x2           0           

x3           0           

x4           0.033 

x5           0           

x6           0.038 

x7           0           

x8           0.034 

x9           0.002 

x10          0.017 

x11          0.017 

x12          0.003 

x13          0          

x14          0.077 

z1            0           

z2           0.004 

z3          -0.502 

 

 

Then we added the two-way interaction terms from all the variables selected above and re-ran LASSO.  

Based on 10-fold cross-validation, the optimal LASSO fit detected 6 interactions and gave the following 

estimated coefficients: 
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(Intercept)  3.783 

x1           0           

x2           0            

x3           0            

x4           0            

x5           0            

x6           0.0118 

x7           0            

x8           0           

x9           0            

x10          0            

x11          0            

x12          0            

x13          0            

x14          0.032 

z1           0           

z2           0            

z3          -0.494 

x4x6         0            

x4x8         0           

x4x10        0.014 

x4x11        0           

x4x14        0                     

 

x4z2         0           

x4z3         0            

x6x8         0.005 

x6x10        0            

x6x11        0            

x6x14        0            

x6z2         0            

x6z3         0            

x8x10        0           

x8x11        0.002 

x8x14        0           

x8z2         0            

x8z3         0            

x10x11       0           

x10x14       0.001 

x10z2        0.001 

x10z3        0           

x11x14       0.007 

x11z2        0           

x11z3        0           

x14z2        0            

x14z3        0            

xz2z3        0           

 

 

The LASSO p-value from covariance test using the LASSO solution path (All p-values are rounded to 3 

decimal places). 

                LASSO p-

value 

z3            0.019 

x4x10      0.000 

x10x14    0.304 

x10z         0.989 

x8x14       0.830 

x11x14     0.760 

x6x8         0.537 

x8             0.956 

- x8x14     NA 

x14           0.974          

x8x11       0.965 

-x8            NA   

x6             0.707         

 

Real World Data Set: 

Log transformation was used for all the exposure variables (we retained the original variable names). 

lip_PBDE_47,   lip_PBDE_99 and lip_PBDE_100 are highly correlated. lip_pcb153,  lip_pcb156,  

lip_pcb170,   lip_pcb180,  lip_pcb187, lip_pcb194,  lip_pcb199, lip_pcb138_158 and lip_pcb196_203 are 

highly correlated. The 5 covariates are retained in all models. 10-fold cross-validation found that 

lambda=0.187 gave the cross-validated minimum mean squared error. With this lambda, the LASSO fit 

selected 7 exposure variables.  The estimated coefficients are: 
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  (Intercept)       99.126 

child_sex          -3.179 

mom_educ        -6.136 

mom_age          -0.530 

mom_race         -4.671 

mom_smoke       0.326 

lip_PBDE_47    -0.331 

lip_PBDE_99    -0.550 

lip_PBDE_100    0         

lip_PBDE_153    0         

lip_hcb                 0        

lip_pp_dde           0         

lip_oxychlor       -0.131 

lip_nonachlor      0         

         

lip_pcb74        0         

lip_pcb99        0         

lip_pcb105      0.824 

lip_pcb118      0         

lip_pcb146      0.985 

lip_pcb153      0         

lip_pcb156      0         

lip_pcb170      0        

lip_pcb180      0         

lip_pcb187     -1.842 

lip_pcb194      1.552 

lip_pcb199      0         

lip_pcb138_158  0         

lip_pcb196_203  0   

 

 

LASSO is based on the size of coefficients to select variables. We may want to retain the most common 

exposure such as lip_PBDE_47 and  lip_PBDE_153  in all models. Re-running  LASSO. The estimated 

coefficients are:  
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 (Intercept)         100.865 

child_sex              -3.238 

mom_educ           -6.197 

mom_age             -0.648 

mom_race            -4.599 

mom_smoke          0.380 

lip_PBDE_47      -1.216 

lip_PBDE_99       0        

lip_PBDE_100     0         

lip_PBDE_153     0.126 

lip_hcb                 0         

lip_pp_dde           0         

lip_oxychlor       -0.158 

lip_nonachlor       0         

 

 lip_pcb74        0        

lip_pcb99         0        

lip_pcb105       0.894 

lip_pcb118       0         

lip_pcb146       0.973 

lip_pcb153       0         

lip_pcb156       0         

lip_pcb170       0         

lip_pcb180       0         

lip_pcb187      -1.862 

lip_pcb194       1.549 

lip_pcb199       0         

lip_pcb138_158   0        

lip_pcb196_203   0 

 

 

However, the LASSO p-values for all the exposure variables are >0.05. 

Conclusions and Discussion: We analyzed the two simulated data sets and a real world data set and 

showed LASSO can be a promising technique to handle multicollinearity and high dimensional data of 

chemical exposures. Generically, the usual p-values and confidence intervals do not exist for LASSO 

estimates. Many methods have been proposed using resampling and data splitting (B𝑢̈hlmann et al., 

2011). Recently, a significance test for the predictor variable that enters the current LASSO model along 

the LASSO solution path has been proposed by Tibshirani’s group (Lockhart et al., 2014). This test has a 

simple and has an exact asymptotic null distribution without the need of resampling or data splitting. 

However, the p-value from this test cannot be interpreted in the classic sense based on a fixed null 

hypothesis since the test is a conditional test.  
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Abstract:  

Objective: To determine which exposure or combination of exposures in the mixture is associated with 

children’s neurodevelopment. 

Methods: Exploratory data analysis (EDA) was first performed including descriptive statistics and graphs 

to examine the distributions of the outcome, children’s Mental Development Index (MDI), and individual 

exposures and relationships between them by computing Pearson’s correlation coefficients. Normality 

of the outcome variable was tested using the Shapiro-Wilk test [1].  

We implemented the following two data-driven approaches to analyze the data: (1) stepwise multiple 

linear regression (MLR) [2], and (2) principle component analysis (PCA) [3]. In Approach #1, a stepwise 

regression was first performed including only those exposures that were statistically significant at the 

0.1 level from univariate linear regression models and the 5 confounders as main effects. Next, a second 

stepwise regression was performed to examine all possible two-way interactions using only those 

variables selected in the first step. The final model is the one with the set of variables that results in the 

smallest Akaike information criterion (AIC) [2,4]. In Approach #2, we first addressed the issue of possible 

collinearity by applying PCA to the following three groups of exposure variables (i.e., 14 polychlorinated 

biphenyl (PCB) congeners, 4 polybrominated diphenylether (PBDE) congeners, and 4 organochlorine 

pesticides) separately.  

. We then subjected the top 2 or 3 principle components (PC) to the stepwise variable-selection process 

using multiple linear regressions. For a given fitted model, model fit statistics including R-squared and 

root mean squared error (RMSE) were computed. The level of collinearity was assessed by the Variance 

Inflation Factor (VIF) [2] with VIF>10 indicating the presence of collinearity. Standard regression 

diagnostic methods [2] were implemented to identify possible violations of model assumptions including 

non-normality and non-linear effects. Standardized coefficients were computed to compare the relative 

influence of different explanatory variables. A Box-Cox transformation was also explored to improve the 

normality of MDI. [5]. 

Results: The outcome MDI had a mean of 91.6, median of 92, and standard deviation (SD) of 10.3, 

ranging from 50 to 114. The distributions of chemical exposure variables are different. A scatter-matrix 

plot of MDI and the exposure variables (Figure 1-3) suggests that MDI has a non-linear relationship with 

oxychlor, and a positive association with PCB156, PCB196, and PCB199. We also observed a positive 
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association between many of the exposures in the same category. Figure 4 shows that the distribution 

of MDI is associated with mother’s smoking status, race and education, indicating that these variables 

should be considered as potential confounders and/or effect modifiers. The histogram of MDI in Figure 4 

suggests that its distribution is approximately normal. However, the Shapiro-Wilk test indicated 

otherwise (p<0.05). We explored a Box-Cox transformation of MDI, which suggested a square root 

transformation would be appropriate. However, given the difficulty in interpreting the model, we 

decided to use the original scale in our analysis. 

Results are summarized in Table 1 and 2. Under Approach #1, PCB74, PCB105, PCB118, PCB194, 

PCB196_203, PCB199 and PBDE100 were identified as having a p-value less than 0.1 in the univariate 

regressions. Together with the 5 confounders, the final model included PCB118, PBDE100, mother’s 

education, mother’s race, child’s gender as main effects, and an interaction between mother’s 

education and PCB118. Using the standardized coefficients, the sizes of the associations with MDI in 

order of magnitude were: mother’s education (std. β=-6.12), mother’s race (std. β=-4.93), child’s gender 

(std. β=-3.55), the interaction between mother’s education and PCB118 (std. β=3.43), PBDE100 (std. β=-

0.90), and PCB118 (std. β=0.72). Diagnostic plots of the residuals suggested no obvious departures from 

normality or homoscedasticity. Subject 357 (noted as 243 in Figure 5) seems to be an outlier but not an 

influential point (Figure 5). The final model had a VIF of 1.30, suggesting no excess collinearity among 

selected predictors. To use the model as a risk assessment tool, we can calculate fitted values and rank 

them into low, intermediate, and high risk groups, or compute predicted values and prediction intervals 

(PI) for a new set of data. To help visualize the multi-dimensional nature of the model, the fitted surface 

of MDI stratified by mother’s education as a function of the two exposures PCB118 and PBDE100 while 

fixing the remaining covariates at their means is presented in Figure 6.  

In Approach #2, the first three PCs in the PCB group identified explained 91.8% of the total variance, the 

first two PCs in the PBDE group explained 96.8% of the total variance and the first two PCs in the 

organochlorine pesticides group explained 64.2% of the total variance (Figure 7). For PCB, the first PC 

(PC1) loaded on PCB146, PCB153 and PCB138_158 equally; the second PC (PC2) loaded on PCB99, 

PCB105 and PCB118 with loadings of 0.40, 0.52 and 0.46 respectively, and the third PC (PC3) loaded on 

PCB199 and PCB196 with loadings of 0.53 and 0.43 (Figure 8). For PBDE, PC1 loaded on PBDE47 and 

PBDE100 equally, and the PC2 loaded solely on PBDE153 (Figure 9). PC1 in the pesticides group loaded 

on oxychlor and nonachlor equally and PC2 loaded on HCB and DDE with loadings of 0.50 and 0.76. 

(Figure 10) After the forward selection analysis that included the 7 PCs and their two-way interactions 

(Table 2), the variable that had the strongest association with MDI was mother’s education (std. β=-

9.13). The only exposure variable identified was PC2 from the PCB group, along with an interaction with 

mother’s education. The AIC, VIF, RMSE and R-squared in this model were very similar with the model in 

Approach #1.  

Conclusions: Appropriate statistical analysis for assessing the exposure-outcome association in a 

mixture requires multiple steps to explore and model the relationships between variables. There are 

many statistical models that can be applied. Taking multiple approaches and finding similar results 

bolster findings. Any proposed models should be validated using independent datasets and/or 

laboratory experiments. Including knowledge from the scientific content area is also essential in guiding 
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the selection of statistical methods and can further strengthen the validity and interpretability of the 

statistical analysis results. 

Funding source: NIH grants P30ES013508 and P42ES023720  
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(Figures and Tables are listed below) 

Figure 1: Scatter matrix plot of outcome MDI and PCB exposures variables. 

Figure 2: Scatter matrix plot of outcome MDI and PBDE exposures variables. 

Figure 3: Scatter matrix plot of outcome MDI and organochlorine pesticides exposures variables. 

Figure 4: Histogram of MDI and boxplots of MDI by the confounders. 

Figure 5: Residual and other diagnostic plots based on the stepwise regression model. 

Figure 6: Fitted surface plot of MDI by exposures (PCB118 and PBDE100) stratified by mother’s 

education while adjusting for the remaining covariates in the final model. 

Figure 7: Selection of the top PC based on the scree plot. 

Figure 8: Factor loading plot of the top 3 PCs in PCB group. 

Figure 9: Factor loading plot of the top 3 PCs in PBDE group. 

Figure 10: Factor loading plot of the top 3 PCs in organochlorine pesticides group. 

Table 1: Regression analysis results from Approach 1. 

Table 1: Regression analysis results from Approach 2. 
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Figure 1: Scatter matrix plot of outcome MDI and PCB exposures variables. 

 

Figure 2: Scatter matrix plot of outcome MDI and PBDE exposures variables. 
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Figure 3: Scatter matrix plot of outcome MDI and organochlorine pesticides exposures variables. 

 

Figure 4: Histogram of MDI and boxplots of MDI by the confounders. 
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Figure 5: Residual and other diagnostic plots based on the stepwise regression model. 

 

 

Figure 6: Fitted surface plot of MDI by exposures (PCB118 and PBDE100) stratified by mother’s 

education while adjusting for the remaining covariates in the final model. 

    Mother’s education>12 years      Mother’s education≤12 years 
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Figure 7: Selection of the top PC based on the scree plot. 

 

  

Figure 8: Factor loading plot of the top 3 PCs in PCB group. 
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Figure 9: Factor loading plot of the top 3 PCs in PBDE group. 

 

Figure 10: Factor loading plot of the top 3 PCs in organochlorine pesticides group. 
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Table 1: Regression analysis results from Approach 1. 

Variable β (95% CI) Std. β (95%CI) 

PCB118 0.15 (-0.09, 0.38) 0.72 (-0.45, 1.90) 

PBDE100 -0.06 (-0.14, 0.01) -0.90 (-2.00, 0.20) 

Mom Educ -10.32*** (-15.37, -5.27) -6.12*** (-9.18, -3.06) 

Mom Race -4.93*** (-7.67, -2.18) -4.93***(-7.67, -2.18) 

Child Sex -3.55**(-5.81, -1.28) -3.55**(-5.81, -1.28) 

Interaction   

PCB118*Mom Educ 0.69 (-0.04, 1.41) 3.43 (-0.19, 7.04) 

VIF 1.30  

R^2 0.23 

RMSE 9.14 

AIC 1970.02 

*<0.05, ** <0.01, ***<0.001 

 

Table 2: Regression analysis results from Approach 2. 

Variable β (95% CI) Std. β (95%CI) 

PCB PC2 0.70 (-0.49, 1.88) 0.70 (-0.49, 1.88) 

Mom Educ -6.06*** (-9.13, -3.00) -6.06*** (-9.13, -3.00) 

Mom Race -5.20*** (-7.94, -2.47) -5.20*** (-7.94, -2.47) 

Child Sex -3.56**(-5.83, -1.29) -3.56**(-5.83, -1.29) 

Interaction   

PCB PC2*Mom Educ 3.33 (-0.18, 6.85) 3.33 (-0.18, 6.85) 

VIF 1.29  

R^2 0.22 

RMSE 9.17 

AIC 1970.67 

*<0.05, ** <0.01, ***<0.001. PCB PC2 loads on PCB99, PCB105 and PCB118 with loadings of 0.40, 0.52 

and 0.46. 
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30. Analysis of the First Simulated Dataset using Nonlinear and 

Weighted Quantile Sum (WQS) Regression 
Presenting Author:  Chris Gennings 

Organization:  Icahn School of Medicine at Mount Sinai 

Contributing Authors:  Chris Gennings 

Abstract:  

Preliminary analyses of the first simulated dataset indicated nonlinear marginal associations between 

exposure and Y with different maximum effects defined by the binary variable Z (See Figure 1). Thus, 

analyses either controlled for Z or 

were stratified by Z.  

The bivariate correlation pattern 

among the X variables included a 

cluster among X1, X2 and X3 

(correlation estimates ranging 

between 0.7 and 0.82); and between 

X5 and X6 (correlation estimate of 

0.6); other correlations were less 

than 0.5.  

Preliminary nonlinear regression 

analyses were based on a nonlinear 

exponential model: i.e.,  

  1 exp( )     Xβ
, 

parameterized to allow a different 

maximum effect for different levels 

of Z (i.e., 0 1( 0) ( 1)Z Z     

). The model included linear and all 

pairwise cross-product terms. The 

resulting analysis indicated evidence 

of bivariate interaction between:  X1 

and X3 (negative); X1 and X5 

(negative coefficient); X1 and X7 

(positive coefficient); and X5 and X7. 

These interactions are associated 

with a generalized definition of dose 

Figure 1: Plots of marginal data for preliminary analyses  
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addition where an interaction is associated with a change in slope. 

Due to the complex correlation pattern among the X’s, we evaluated the joint mixture effect using WQS 

regression embedded within nonlinear exponential functions.  

Nonlinear WQS Regression: Extending the work of Carrico et al (2014), we embedded the WQS 

regression model in a nonlinear exponential model and allowed for specific interactions as suggested 

from preliminary analyses. For an increasing association (where 1 >0): 

 0 1 1 ( , )
1 exp( ( ) )

c

j j rs r sj r s S
w x w x x z    

 

      
   

 

where S is the set of interaction terms considered. For a decreasing association (where 
1

<0): 

 1 1 ( , )
exp ( )

c

j j rs r sj r s S
w x w x x z    

 

    
   

. 

In either case, the WQS index was defined as  1 ( , )

c

j j rs r sj r s S
WQS w x w x x

 
  

where the weights 

are constrained to sum to 1 and are weighted averages across 100 bootstrap analyses. When the 

corresponding 
1

is positive and significant, the corresponding weights may be interpreted as associated 

with a positive mixture effect; when the corresponding 
1

is negative and significant, the corresponding 

weights may be interpreted as associated with a negative mixture effect. Analyses were conducted in 

both directions by constraining the beta coefficient to be either positive of negative. Simplified analyses 

were conducted with only linear terms for comparison and ease of interpretation. 

Results: Analyses were 

conducted in the positive and 

negative directions (Table 1) by 

constraining the beta coefficient 

associated with the WQS indices. 

In the positive direction, X1 

(weight of 59%) and X7 (35%) 

dominate the index with a 

positive and significant 

regression coefficient. Allowing 

for interaction as indicated from 

preliminary analyses, there 

appears to a synergy between X1 

and X7 (weight of 21%). There is 

also an indication that X5 

Table 1: Results from nonlinear WQS regression using all the data and 

adjusting for Z 
 Overall (N=500); adjusted by Z 

Constraint: Beta1>0 Beta1<0 

Beta1 0.14 1.1 -0.10 -0.10 

95% CI 0.05, 0.23 0.94, 1.3 -0.15, -0.04 -0.18, -0.03 

Linear Weights     

W1 0.59 0.33 0 0 

W2 <0.01 0.02 0 0 

W3 0.06 0.03 0 0 

W4 <0.01 0 0.07 0.06 

W5 0 0 0.90 0.69 

W6 0 0 0.04 0.03 

W7 0.35 0.26 0 <0.01 

Interactions     

W13  0.06  <0.01 

W15  0.09  0.08 

W17  0.21  <0.01 

W57  0.01  0.14 
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increases the effect of X1 (and vice versa). 

In the negative direction, X5 dominates the association (weight of 90%). Allowing for interaction as 

indicated from preliminary analyses, there is some evidence of a synergy between X1 and X5(weight of 

8%) and between X5 and X7 (weight of 14%). 

An advantage of WQS regression is the ease of presentation of the association between the estimated 

weighted index and the adjusted response variable (defined by the residuals from the covariate only 

model plus the mean of y). The data in Figure 2 are LOESS fits from the indices with interaction terms 

defined in Table 1. Clearly, there is a nonlinear association between the indices and the adjusted 

response variable. 

 

Sensitivity analyses: A sensitivity analysis was conducted in stratified analyses of nonlinear WQS 

regression. Due to the 

reduced sample sizes, we 

consider only linear 

weights. When Z=0, X1 and 

X7 accounted for 81% of the 

weight, with some 

indication of an effect due 

to X2 and X3 (15% of the 

weight). Although not 

significant, in the negative 

direction, X5 dominated the 

association. When Z=1, X1 

Figure 2: Association between the estimated weighted indices (A) with positive association; 

and (B) negative association using the weights with interaction components from Table 1. 

A B 

  

 

Table 2: Results from sensitivity analyses. 
 Z=0 (N=286)  Z=1 (N=214) 

Constraint: Beta1>0 Beta1<0 Beta1>0 Beta1<0 

Beta1 0.95 -0.27 0.64 -0.22 

95% CI 0.49,1.4 -0.67, 0.14 0.27, 1.0 -0.60, 0.15 

Linear Weights     

W1 0.12 0 0.41 0 

W2 0.07 0 <0.01 0 

W3 0.08 0 0.02 0 

W4 0.04 0.06 <0.01 0.09 

W5 0 0.94 0 0.89 

W6 0 0 0 0.02 

W7 0.69 0 0.56 0 
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and X7 accounted for 97% if the weight in the positive direction. Again, although not significant, in the 

negative direction, X5 accounted for 89% of the weight. These results are somewhat similar to those in 

the overall analyses (Table 1). 

Reference: 

Carrico C, Gennings C, Wheeler DC, Factor-Litvak P (2014) Characterization of weighted quantile sum 

regression for highly correlated data in a risk analysis setting. Journal of Agricultural, Biological and 

Environmental Statistics, [epub: Dec 24, 2014]. 
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31. Bayesian Methods for Assessing Health Effects of Chemical Mixtures 
Presenting Author:  David Dunson 

Organization:  Duke University 

Contributing Authors:  David Dunson and Amy Herring 

Abstract:  

In assessing the joint effects of multiple components of a chemical mixture on human health, several 

statistical difficulties arise: the possibility of synergy or antagonism among chemicals, collinearity in 

different exposures and inefficiency in estimating non-linear dose response surfaces. We propose 

Bayesian semiparametric methods for addressing these issues, adaptively reducing dimensionality in 

estimating the dose response "surface" in multiple chemicals, while enabling detection of additive, 

synergistic, or antagonistic effects among groups of chemicals. By using a flexible Bayesian approach, we 

avoid making restrictive assumptions while allowing for the incorporation of prior information on dose 

response shape, chemical class, and information from previous studies. The methods are applied to 

several epidemiology applications. 
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32. Assessing Health Effects of Environmental Chemical Mixtures Using 

Stepwise Multiple Linear Regression  
Presenting Author:  James Nguyen 

Organization:  U.S. Environmental Protection Agency, Office of Pesticide Programs 

Contributing Authors:  James Nguyen 

Abstract:  

While there are numerous advanced statistical approaches that could be used to investigate the effect 

of an exposure to environmental chemical mixtures on an outcome, these can be difficult to implement 

and interpret, and application of those methods has been a high barrier for individuals who may not 

have sufficient familiarity with those methods to use them. Also, there is a limitation in using the results 

from those analyses due to the fact that the chemicals or chemical groups are sometimes regulated 

individually. For this analysis, stepwise multiple linear regression has been selected to evaluate and 

study the effects of mixture of exposures on the outcome Y in Dataset 1 and Dataset 2. First, univariate 

analyses are performed to select a list of candidate confounders whose p-value < 0.15. Then, a stepwise 

procedure is done using the list of candidate confounders to select a semi-final model (model 1) that 

includes only confounders. Next, analyses with models including the confounders in model 1 and one of 

the exposures are performed to select exposures whose p-values < 0.15 as candidate exposures for the 

next stepwise procedure. Finally, the stepwise procedure is conducted to select final model, using model 

1 as the initial model. At any step during the stepwise procedures, a confounder or exposure remains in 

the model if the resulting model has a lower Akaike Information Criterion (AIC) value. Interactions of 

two variables are included to the list of candidates for selection only if they are already selected in the 

model. A variable is removed from the model if its p-value > 0.15 and the resulting model has a lower 

AIC value.  

In the analysis of dataset 1, we found the combination of exposures X1, X2, X5, and X7 describes the 

variation of Y well (r-squared = 0.919). In addition to our finding that the effect of X5 on Y is 

systematically different depending on the status Z of the subject (i.e., there is an interaction between X5 

and Z), there were interactions between X1 and X2 and between X5 and X7.  

In the analysis of dataset 2, we found that exposures X1, X5, X6, X10, X12, and X14 contribute to the 

outcome. Exposures X3, X4, X8, and X11 are strongly correlated to X5, X6, and X14, so their 

contributions to Y are potentially expressed by X5, X6 and X14. X13 is strongly correlated to X12, so its 

contribution to Y is potentially expressed by X12. Exposures X2, X7, and X9 do not contribute to the Y. 

There are no interactions between the exposures; however, the effects of X5, X6 and X12 on Y depend 

on the Z3 status of the subject; the effect of X10 depends on the status Z2; and the effect of X14 

depends on the statuses of both Z2 and Z3. It appears that the selected model could explain more than 

50% of the variation in Y (r-squared = 0.564). 
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Results: 

Dataset 1: Exposures X1, X2, X5, and X7 contribute to the outcome. Since X3 is highly correlated to X1 

and X2 and X6 are moderately correlated to X5, their contribution to Y is adequately expressed and 

accounted for by X1, X2, and X5 in the final model. X4 does not contribute to the variation of Y. 

Interaction occurs when the effect of an exposure on the outcome Y depends on the value(s) of other 

exposure(s). There is evidence of interactions between exposures X1 and X2 and between exposures X5 

and X7. The selected model performs well in characterizing the variation of Y, with r-squared value = 

0.919 and RMSE = 3.118. 

Dataset 2: Exposures X1, X5, X6, X10, X12, and X14 contribute to the outcome. Exposures X3, X4, X8, and 

X11 are strongly correlated to X5, X6, and X14, so their contribution to Y is sufficiently expressed by X5, 

X6 and X14 in the final model. Exposure X13 is strongly correlated to X12, so its contribution to Y is 

potentially expressed by X12 in the final model. Exposures X2, X7, and X9 do not contribution to the 

variation of Y. There is no evidence of interaction between the exposures. However, there are 

interactions between confounder Z2 with X10 and X14 and also between Z3 with X5, X6, X12, and X14. 

The selected model explains more than 50% of the variation of Y, with r-squared value = 0.564 and 

RMSE = 0.437. 

Table 1 and Figure 1 (for Dataset 1) and Table 2 and Figure 2 (for Dataset 2) present the final model 

parameter estimates and the Residual vs. Predicted Plots (rvp plots) for each of the two datasets. As can 

be seen, the rvp plots suggest that Z in Dataset 1 and Z3 in Dataset 2 are important predictors and that 

the distributions of the modeled residuals are reasonable. Overall, the model r-squared values and the 

diagnostic plots seem to imply a reasonably-specified baseline model to which it would be appropriate 

to compare to models developed using more advanced statistical techniques.   
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33. Traditional Epidemiological Approaches to Analyze Chemical 

Mixtures and Human Health 
Presenting Author:  Joseph M. Braun 

Organization:  Brown University 

Contributing Authors:  Joseph M. Braun 

Abstract:  

Introduction: Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and 

organochlorine pesticides are three classes of persistent environmental chemicals detected almost 

universally in human serum. Prenatal exposure to these chemicals may be associated with decreased 

cognitive abilities and behavior problems in childhood.  

Objective: I used a traditional epidemiological approach to determine if prenatal exposure to individual 

PCBs, PBDEs, or organochlorine pesticides was associated with child cognitive development in a 

prospective birth cohort of 270 women and their children.  

Methods: The dataset for this analysis includes concentrations of 14 PCBs, 4 PBDEs, and 4 

organochlorine pesticides measured in maternal serum collected during the 2nd trimester of pregnancy. 

Children’s cognitive development was assessed at 1-3 years of age using the Mental Development Index 

(MDI) of the Bayley Scales for Infant Development-II. We adjusted for child sex, maternal age, race, 

education, and smoking during pregnancy.  

I started the analysis by describing the correlation between individual log10-transformed chemical 

concentrations. Then I employed two traditional epidemiological approaches to analyze these data. 

First, I examined the association between each chemical and MDI scores using 22 individual covariate-

adjusted linear regression models. Second, I examined the relationship between MDI scores and two 

simple cumulative measures of PCB and PBDE exposure that I created by summing the concentrations of 

individual congeners (ΣPCB and ΣPBDE). 

Results: The correlation between individual chemicals was higher for chemicals within a class than 

between classes (Figure 1). For example, the Pearson correlation coefficient between individual PCB 

congeners ranged from 0.03 to 0.82 (median=0.53), whereas the correlation between PBCs and PBDEs 

or organochlorine pesticides ranged from -0.24 to 0.66 (median=0.18). Unadjusted associations between 

serum PCBs, PBDEs, or organochlorine concentrations were biased away from the null and became 

smaller in magnitude after adjustment for covariates (Figure 2). After covariate adjustment, each 10-fold 

increase in three of the PBDEs (PBDEs 47, 99, and 100) was associated with a 1.9 to 2.4 point decrease in 

MDI scores. In contrast, each 10-fold increase in seven of the PCBs (PCBs 105, 146, 153, 156, 170, 

138/158, and 196/203) was associated with a 2.1 to 3.9 point increase in MDI scores. Concentrations of 

three organochlorine pesticides was associated with <2 point increase in MDI scores, while each 10-fold 

increase in p’p’-dichlorodiphenyldichloroethylene (DDE) concentrations was associated with a 2.0 point 

increase in MDI scores. The two simple cumulative measures of PCB and PBDE exposure provided similar 
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results to the analysis of the individual congeners, where the ΣPCB concentrations were positively 

associated with MDI scores and ΣPBDE concentrations were inversely associated with MDI scores 

(Figure 4, 1st panel). Joint adjustment for ΣPCB, ΣPBDE, and DDE in the same model revealed that the 

positive association between DDE and MDI scores was biased in unadjusted models. This was because of 

positive confounding from the positive correlation between ΣPCBs and DDE (Pearson r=0.6) and the 

positive PCB-MDI association (Figure 2, 2nd panel). The associations between ΣPCB and ΣPBDE 

concentrations and MDI scores did not change appreciably in magnitude or precision when all three 

chemicals were included in the same model. 

Conclusions: In these data, we show that prenatal serum PCB and PBDE concentrations are associated 

with subtle increases and decreases in early childhood cognitive development, respectively. These 

results provide a basis to compare the findings from more complex statistical approaches that consider 

these chemicals as a mixture. Future studies of chemical exposures and human health should consider 

biases that arise from co-pollutant confounding given the correlated nature of many environmental 

exposures.   
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