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RELEVANCE
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http://www.clu-in.org/greenremediation/

EPA’s strategic plan 
strives for cleanup 
programs that use 
natural resources 
and energy 
efficiently, reduce 
negative impacts 
on the 
environment, 
minimize pollution 
at its source, and 
reduce waste to the 
greatest extent 
possible. 
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Solar Energy use at 
Superfund Sites: Examples

• Aerojet-General Corporation CA, Trichlorothene (TCE) 
and perchlorate: Use solar energy to partially meet 
power requirements for pump-and-treat system.

• Apache Powder AZ, heavy metals and explosives:  
constructed wetland system. Used a solar-powered 
centrifugal pump to promote water recirculation in the 
wetlands system.

• Crozet Orchard VA, metals and pesticides: 
phytoremediation. Uses solar-powered low-flow pumps 
to transfer water from a hill-bottom spring to a second 
storage tank.

• Delfasco Forge TX, TCE vapor. Use solar energy to 
power exhaust systems addressing TCE vapor intrusion.
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EPA’s Relevant Activities

• Emphasize the use of renewable energy for 
cleanup operations

• Developed BMP’s on clean fuels and emission 
technologies

• Evaluating tools for calculating environmental 
“footprints” of cleanup

• EPA’s 2011-2015 Strategic Plan includes continued 
work to reduce the energy use and environmental 
footprint during site investigation and remediation 

Research Needs/Opportunities: 
Sustainable Solar-Powered “Active” Remediation
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CONCEPT AND BASICS
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Background

• In many cases, remediation is based on redox
manipulation of groundwater for transformation 
and/or immobilization of contaminants 

• Redox manipulation is usually achieved by 
injection of additives that are oxidizing or 
reducing; e.g., HRC, ORC, ferrous sulfate, ZVI

• Transformation occurs by chemical and/or 
biological processes

• Challenges: Efficiency; Sustainability; Delivery; 
Cost
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• Adopt electrolysis to manipulate and control 
groundwater redox conditions for chemical and/or 
biological transformation of contaminants

• Use solar panels for electric power required for 
electrolysis 

• Treatment systems could include well injections 
or permeable reactive barrier systems 

• Potential target contaminants:
– Chromium, Arsenic, Chlorinated solvents, PAH’s, others
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Solar-Powered Remediation 
– Concept –
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Solar-Powered Remediation 
– Concept –



www.neu.edu/protect

Basics: Electrolysis
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Example Strategy 1 
– O2/H2 Production –

• H2O   ½ O2 + 2H+ + 2e- (Anode)

• 2H2O + 2e-  2OH- + H2 (Cathode)

• Net reaction in a mixed electrolyte
• H2O   ½ O2 + H2 

• Options:
• Collect O2 at the anode and allow H2 to mix with GW

• Collect H2 at the cathode and allow O2 to mix with GW
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Example Strategy 2
– Fe Anode Redox –

• Iron Anode: Fe(0)  2e- + Fe2+ (aq)

• Sustainable generation and delivery of Fe(II) 
to GW

• Chemically reducing conditions develop 
• Could be used in a mixed or isolated 

electrode reactor
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Transformation 
Mechanisms

• Biological
– Aerobic: by production of O2 as an electron acceptor; 

e.g. PAH
– Anaerobic: by production of H2 as an electron donor; 

e.g. PCE

• Chemical 
– Reduction of hexavalent chromium 
– Oxidation of PAH and BTEX 
– Alkaline Hydrolysis: transformation of RDX 

• Electrochemical
– Direct oxidation at the anode or reduction at the cathode
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EXAMPLE –
HEXAVALENT CHROMIUM
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Laboratory Study: 
Cr(VI) Reduction by Fe electrolysis

• Hypothesis:

– Electrolysis using iron electrodes (anodes and cathodes) 
will induce Fe(II) (and H2) dominated reducing conditions 
that can be manipulated for chemical reduction of Cr(IV).

• Justification:

– The reactivity is similar to reduction by ZVI (single 
electrode redox)

• Advantages:

– The kinetics of electrolysis and consequent redox and 
transformation can be controlled to optimize (accelerate 
or limit) the release of Fe(II)/H2 by controlling the electric 
current density and polarity in a 2 electrode system.
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Experimental Setup
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ORP and pH measurements under 1 mA/L using Fe electrodes for cases with separate and 
mixed electrolytes. Total voltage was on the order of 2 V in the separated and 0.5 V in the 
mixed electrolytes. 

Results 
– Batch Samples –
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RESEARCH TRANSLATION
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• Assume average groundwater flow rate = 10 cm/day.
• Assume Average chromium concentration = 5 mg/l, 
• Cr flux = 0.5 g/m2.day or 0.01 mole/m2.day. 
• Required Fe(II) flux [JFe(II)] = 0.03  mole/m2.day
• Required electric current density (I=2JFe(II)F/0.75) = 0.09 A/m2. 
• 50W solar panel (few $100) with 3 Amps (20 Volt) would cover 

a cross sectional area of more than 30 m2 of flowing 
groundwater. 

• Assumptions: 
– 3 moles of Fe(II) are required per 1 mole of Cr(VI).  

– 75% electrolysis efficiency   

27

Practical Issues:
How Much Energy - Example?
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Potential Challenges

• Precipitation and changes in hydraulic conductivity
– Function of electric current/flow rate, GW chemistry

• Passivation:
– Less likely, but use polarity reversal if it occurs

• pH changes in GW
– Function of electric current/flow rate, GW chemistry

• Delivery to contaminated zones

28

Process design is critical
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Bae et al., 1995 McCarty et al., 1998; 
Goltz et al., 2009

Implementation Strategies 
– Examples –
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CURRENT EFFORT
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PROTECT Focus

• Role of exposure to contamination 
on preterm birth

• Contamination in Puerto Rico (14 
Superfund site + 2 Proposed)

• karst aquifers 
• Target Contaminants: Chlorinated 

Solvents and Phthalates
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PROTECT Project 5
Alshawabkeh, Padilla, Podlaha, Vesper

• Goal: Developing green remediation 
technologies based on conversion of solar 
energy into electrochemical redox in 
groundwater 

• Focus on chlorinated solvents in karst aquifers
• Proposed transformation pathways: 
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Summary

• Solar energy conversion into electrochemical 
redox in groundwater can be a green and 
sustainable remediation technology

• Oxidizing or reducing groundwater conditions 
can be engineered

• Conditions can be developed for chemical, 
biological and/or electrochemical 
transformation

• Fe anodes would lead to reducing conditions 
causing reduction and immobilization of 
chromium

• Transformation of chlorinated solvents by iron 
electrodes is being evaluated in karst aquifers
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