Skip Navigation

Climate Change and Human Health Literature Portal Climate drivers of vector-borne diseases in Africa and their relevance to control programmes

Climate Change and Human Health Literature Portal

Thomson MC, Munoz AG, Cousin R, Shumake-Guillemot J
2018
Infectious Diseases of Poverty. 7 (1): 81

BACKGROUND: Climate-based disease forecasting has been proposed as a potential tool in climate change adaptation for the health sector. Here we explore the relevance of climate data, drivers and predictions for vector-borne disease control efforts in Africa. METHODS: Using data from a number of sources we explore rainfall and temperature across the African continent, from seasonality to variability at annual, multi-decadal and timescales consistent with climate change. We give particular attention to three regions defined as WHO-TDR study zones in Western, Eastern and Southern Africa. Our analyses include 1) time scale decomposition to establish the relative importance of year-to-year, decadal and long term trends in rainfall and temperature; 2) the impact of the El Nino Southern Oscillation (ENSO) on rainfall and temperature at the Pan African scale; 3) the impact of ENSO on the climate of Tanzania using high resolution climate products and 4) the potential predictability of the climate in different regions and seasons using Generalized Relative Operating Characteristics. We use these analyses to review the relevance of climate forecasts for applications in vector borne disease control across the continent. RESULTS: Timescale decomposition revealed long term warming in all three regions of Africa - at the level of 0.1-0.3 degrees C per decade. Decadal variations in rainfall were apparent in all regions and particularly pronounced in the Sahel and during the East African long rains (March-May). Year-to-year variability in both rainfall and temperature, in part associated with ENSO, were the dominant signal for climate variations on any timescale. Observed climate data and seasonal climate forecasts were identified as the most relevant sources of climate information for use in early warning systems for vector-borne diseases but the latter varied in skill by region and season. CONCLUSIONS: Adaptation to the vector-borne disease risks of climate variability and change is a priority for government and civil society in African countries. Understanding rainfall and temperature variations and trends at multiple timescales and their potential predictability is a necessary first step in the incorporation of relevant climate information into vector-borne disease control decision-making.

Expand Abstract

Resource Description

    Meteorological Factor, Precipitation, Sea Surface Oscillation, Seasonality, Temperature
    • Meteorological Factor, Precipitation, Sea Surface Oscillation, Seasonality, Temperature: Cold, Heat
    Non-United States
    • Non-United States: Africa
    Infectious Disease
    • Infectious Disease: Vectorborne Disease
      • Vectorborne Disease: General Vectorborne Disease, Mosquito-borne Disease
        • General Vectorborne Disease, Mosquito-borne Disease: Malaria
        Mosquito-borne Disease
      Vectorborne Disease
    Research Article
    Adaptation, Health Sector Influence
    • Adaptation, Health Sector Influence: Early Warning System
Back
to Top