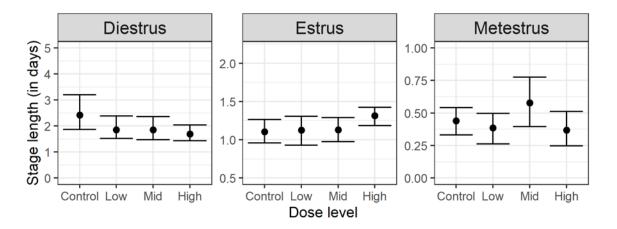
Stage ^a	Comparison ^b	p-value ^c	Significance ^d	Stage Length Difference ^e (days)	
Diestrus	Low-Control	0.576	None	-0.6	
Diestrus	Mid-Control	0.632	None	-0.6	
Diestrus	High-Control	0.179	None	-0.7	
Estrus	Low-Control	1.000	None	0.0	
Estrus	Mid-Control	1.000	None	0.0	
Estrus	High-Control	0.248	None	0.2	
Metestrus	Low-Control	1.000	None	-0.1	
Metestrus	Mid-Control	0.939	None	0.1	
Metestrus	High-Control	1.000	None	-0.1	

Hypothesis test results for analysis of estrous cyclicity using the continuous-time Markov model


a: Insufficient data to evaluate proestrus stage.

- b: Sample sizes for the Control, Low, Mid, and High dose groups respectively were *n* = 10, 10, 10, 10. Dose levels were 0, 0.3, 1.0, 3.0 mg/mL respectively.
- c: The p-values shown were calculated using a permutation null hypothesis testing method and have been adjusted for multiple comparisons using a Hommel correction within each stage.
- d: Significance is based on the adjusted p-value with a significance level of α = 0.05.
- e: A positive number indicates the estimated stage length in the treated group is longer than in the control group.

	Control (0 mg/mL)		Low dose (0.3 mg/mL)		Mid dose (1.0 mg/mL)		High dose (3.0 mg/mL)	
	Stage Length (days)	95% CI						
Diestrus	2.4	(1.9, 3.2)	1.8	(1.5, 2.4)	1.9	(1.5, 2.4)	1.7	(1.4, 2.0)
Proestrus ^a	0.2		0.2		0.2		0.2	
Estrus	1.1	(1.0, 1.3)	1.1	(0.9, 1.3)	1.1	(1.0, 1.3)	1.3	(1.2, 1.4)
Metestrus	0.4	(0.3, 0.5)	0.4	(0.3, 0.5)	0.6	(0.4, 0.8)	0.4	(0.2, 0.5)

Markov model estimates of stage length and 95% confidence intervals

a: Due to a very low number of observations of proestrus, stage lengths were estimated using a profile likelihood approach. As a result, confidence intervals are not available for the proestrus stage length estimate.

Estimates of stage length shown as dots, with bars indicating 95% confidence intervals. Estimates for lengths of proestrus are not shown here due to very low numbers of observations of this stage.