Table 2. Overall Performance of MOA-DILI Model in Training and Test Sets

		ACC	MCC	F ₁ score
MOA-DILI model	training set	0.757 (0.020)	0.505 (0.045)	0.717 (0.032)
	test set	0.695 (0.043)	0.385 (0.087)	0.640 (0.058)
MOA-DILI model with top 4 MOAs	training set	0.703 (0.027) (0.397 (0.056)	0.649 (0.042)
	test set	0.711 (0.040)	0.416 (0.080)	0.659 (0.052)
standard QSAR model	training set	0.658 (0.031)	0.310 (0.062)	0.626 (0.040)
	test set	0.662 (0.041)	0.322 (0.082)	0.627 (0.049)
label permutated model	training set	0.591 (0.039)	0.200 (0.080)	0.609 (0.046)
	test set	0.582 (0.042)	0.182 (0.084)	0.604 (0.046)

The 1000 repetitions resulted in 1000 different MOA-DILI models, which allow assessment of the frequency of each MOA selected by MOA-DILI models. As shown in Figure 2, most MOA-DILI models only used two or four MOAs; the average number of MOAs was around 3.56. Four MOAs (MOA-4, -10, -11, and -16), labeled as ARE-bla (antioxidant response element), ER-luc-bg1-4e2-antagonist (ER-alpha, BG1 cell line), gh3-tre-antagonist (thyroid receptor), and PPARG-bla-agonist (peroxisome proliferator-activated receptor gamma), were used by more than 30% of MOA-DILI models, much more often than other MOAs (Supporting Information Table S2). Consequently, we constructed the MOA-DILI model using only these four MOAs with the same process outlined in Figure 1. As summarized in Table 2, this final model yielded prediction accuracies of 0.697 in 5-fold CV and 0.711 in hold-out testing, which was comparable with other MOA-DILI models and much better than the QSAR model (*P* value <0.0001). The detailed prediction results of the top 4 assay specific models are provided in Supporting Information Table S3.