Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

Your Environment. Your Health.

ROLE OF MACROPHAGE EFFEROCYTOSIS IN OZONE-INDUCED ARDS

Export to Word (http://www.niehs.nih.gov//portfolio/index.cfm/portfolio/grantdetail/grant_number/K08ES031678/format/word)
Principal Investigator: Radbel, Jared M.
Institute Receiving Award Rbhs-Robert Wood Johnson Medical School
Location Piscataway, NJ
Grant Number K08ES031678
Funding Organization National Institute of Environmental Health Sciences
Award Funding Period 22 Sep 2020 to 31 Aug 2025
DESCRIPTION (provided by applicant): Project Summary/Abstract Acute respiratory distress syndrome (ARDS) develops in some individuals as a sequela to indirect stress on the lung from systemic infection (sepsis/endotoxemia). However, it is unclear why only some patients with sepsis develop ARDS. One possible risk factor leading to ARDS in patients with sepsis is exposure to air pollutants such as ozone. Recently, FDA acceptable environmental levels of ozone exposure have been directly linked to the development of ARDS. Our overall goal is to elucidate the mechanisms underlying the increased risk of developing ARDS following exposure to oxidants such as ozone. ARDS develops, in part, due to an accumulation of dead and dying neutrophils and neutrophil-derived proinflammatory apoptotic bodies in the lung. Under homeostatic conditions, these are removed by macrophages via a process known as efferocytosis. We hypothesize that the increased risk of ARDS following ozone exposure is due impaired efferocytosis. Moreover, this is exacerbated in individuals with genetic deficits in the pulmonary collectin, surfactant protein D (SPD), which controls macrophage efferocytosis. To test this, we developed a novel experimental model in which mice are exposed to inhaled ozone followed by intravenous (i.v.) lipopolysaccharide (LPS), a bacterial-derived toxin released into the blood during sepsis (endotoxemia). Our aims are to (1) Determine if ozone exposure and decreased SPD activity exacerbate inflammation and acute lung injury (ALI) by impairing macrophage efferocytosis and (2) Determine if decreased SPD activity exacerbates ozone-induced impairment of macrophage efferocytosis in humans. Wild type and lung-specific conditional SPD knock out mice will be treated with ozone followed by LPS. Macrophage efferocytosis will be measured by flow cytometry. The mechanistic pathways associated with oxidative stress, which is important in ozone toxicity, will be identified using RNA sequencing (RNAseq). We will analyze lung inflammation and macrophage efferocytosis in human subjects, stratified according to single nucleotide polymorphisms within the SPD gene, following controlled ozone exposure. The results of these experiments will provide novel mechanistic insights into the relationship between ozone exposure, macrophage function, SPD variation, and susceptibility to ARDS. These studies are significant, as oxidants such as ozone have been implicated as a risk factor the development of ARDS. The experiments, coursework, and structured mentorship proposed in this application will provide the basis for an NIH R01 grant and initiate the PI's career in independent translational research.
Science Code(s)/Area of Science(s) Primary: 69 - Respiratory
Secondary: 03 - Carcinogenesis/Cell Transformation
Publications No publications associated with this grant
Program Officer Srikanth Nadadur
Back
to Top