Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

Your Environment. Your Health.

THE ROLE OF CYSTEINES IN THE RESPONSE OF 8-OXOGUANINE GLYCOSYLASE (OGG1) TO OXIDATIVE STRESS

Export to Word (http://www.niehs.nih.gov//portfolio/index.cfm/portfolio/grantdetail/grant_number/K99ES029555/format/word)
Principal Investigator: Alnajjar, Khadijeh
Institute Receiving Award University Of Arizona
Location Tuscon, AZ
Grant Number K99ES029555
Funding Organization National Institute of Environmental Health Sciences
Award Funding Period 01 Aug 2019 to 31 Jul 2021
DESCRIPTION (provided by applicant): Project Summary/Abstract: Oxidative stress caused from exposure to environmental toxins results in DNA damage that is repaired by the DNA repair machinery. 8-oxoguanine (8-oxoG) is the most commonly formed DNA lesion, which is recognized and removed by 8-oxoguanine glycosylase (OGG1). The function of OGG1 is important to prevent propagation of DNA error and to mediate transcription of genes responsible for the response to oxidative stress. The inability of cells to perform these tasks can lead to autoimmune and neurodegenerative diseases, cancer, and aging. In addition to DNA oxidation, cysteines can also be targeted for oxidative modification under oxidative stress. OGG1 contains 8 cysteine residues which are potentially targeted for modification in the presence of environmental toxins. This proposal seeks to elucidate the role of cysteine in OGG1 in DNA repair and transcription in response to oxidative stress. Biochemical characterization of OGG1 cysteine mutants is proposed in specific aim 1 to look at the function of cysteine in DNA binding, enzymatic activity, conformational changes, and in protein-protein interactions. These studies will be initiated during the K99 mentored phase and then continued independently during the R00 phase. The second aim will focus on in vivo cell culture work to understand the role of cysteine in DNA repair and in gene regulation and also to identify OGG1 modifications resulting from environmental toxin treatment. The proposed work in this aim will be initiated during the mentored phase, and the technical expertise gained during the mentored phase will be employed during my independent work to accomplish the proposed goals. This work will clarify the role of OGG1 modification in disease initiation and progression and will help in predicting the biological effect of toxin exposure. This work will also provide a foundation for targeted drug design. The long-term goal for this award is to transition into an independent academic research program to explore the comprehensive molecular mechanism of the DNA damage response under oxidative stress and how modifications in the DNA repair machinery lead to disease. To achieve the goals of this award, I assembled a team of mentors with expertise in environmental science, proteomics, redox biochemistry, DNA glycosylases, DNA repair, and gene transcription. This team will also provide me with mentoring in career development for transitioning into independence and establishing and running a successful lab. Further training will be acquired from attending special topic workshops and courses on grant writing and career development offered both at and outside of Yale University. Additional opportunities to attend and present at conferences and to mentor students and postdocs along with continued preparation of manuscripts will be complementary for my long-term goal of establishing an independent research program. These tools will be essential to gain technical training and for career development to establish a successful research program to study the molecular mechanism of the DNA damage response under oxidative stress and its role in disease.
Science Code(s)/Area of Science(s) Primary: 09 - Genome Integrity
Publications See publications associated with this Grant.
Program Officer Daniel Shaughnessy
Back
to Top