Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

Your Environment. Your Health.


Export to Word (
Principal Investigator: Guengerich, F Peter
Institute Receiving Award Vanderbilt University
Location Nashville, TN
Grant Number R01ES010546
Funding Organization National Institute of Environmental Health Sciences
Award Funding Period 01 May 2001 to 31 Mar 2022
DESCRIPTION (provided by applicant):  : DNA is constantly being damaged by both endogenous and exogenous sources, e.g. light, oxygen radicals, chemical contaminants, societal habits. This damage, if not immediately repaired, can result in DNA miscoding and mutation, leading to cancer, teratogenesis, cardiovascular problems, and aging. Understanding the chemistry of DNA lesions and the mechanisms by which they miscode are important in considerations of assessing risks involved. In this proposal, we plan to build on previous research in this laboratory to understand two types of DNA damage. (A) We propose to address the hypothesis that two types of DNA adducts are miscoding, namely N7-alkyl guanine and N3-alkyl adenine adducts, both of which have unstable glycosidic bonds and tend to depurinate. However, the rates of depurination are relatively slow and the potential for miscoding exists. We will produce oligonucleotides with stable analogs by using a 2´-fluoro isostere approach, which has some precedence, including our own work. The methylated derivatives will be examined first, followed by several other complex adducts known to arise from environmental chemicals. Miscoding will be testing in vitro using a series of bacterial and human DNA polymerases, with analysis using gel electrophoresis and mass spectrometry. (B) Another Aim will test the hypothesis that certain peptide- chemical-DNA crosslinks are miscoding. One aspect will deal with the tripeptide glutathione (GSH), known to form DNA crosslinks in vivo with 1, 2-dibromoethane and butadiene diepoxide, two chemicals of interest. A hypothesis to be addressed is that initial O6-alkylguanine DNA-alkyltransferase (AGT)-DNA crosslinks formed with these two chemicals are processed by cellular proteases to yield peptides that are small enough to be bypassed and also miscode. We will test aspects of the hypothesis and, if it is true, characterize aspects of the crosslinked peptides and how they fit into DNA polymerases that can include them inside their structures. Collectively the information is about the unstable linkage and the cross-linked DNA adducts. These investigations are designed to provide important new information about how some types of DNA damage occur and, most importantly, what their biological consequences are.
Science Code(s)/Area of Science(s) Primary: 13 - Metabolism
Secondary: 01 - Basic Cellular or Molecular processes
Publications See publications associated with this Grant.
Program Officer Danielle Carlin
to Top