Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

Your Environment. Your Health.


Export to Word (
Principal Investigator: Dillin, Andrew G
Institute Receiving Award University Of California Berkeley
Location Berkeley, CA
Grant Number R01ES021667
Funding Organization National Institute of Environmental Health Sciences
Award Funding Period 01 Mar 2012 to 30 Jun 2022
DESCRIPTION (provided by applicant): Mitochondrial dysfunction is a primary consequence of nearly all age-onset neurodegenerative diseases. Across eukaryotic species, however, mild mitochondrial stress can have beneficial effects on the lifespan of organisms. Studies on the roles of mitochondria in the aging process have suggested that reduced mitochondrial function during a critical window of development in the nematode C. elegans is sufficient to extend the lifespan of the organism. Mitochondrial stress during this time results in a massive and persistent restructuring in gene expression patterns, as evidenced by analyses of long-lived mitochondrial mutant animals. This sustained response to an early metabolic stress may allow the organism to adapt its adult metabolism to match predicted states of nutrient availability. Previously, we reported that reduced mitochondrial function specifically in the neurons was sufficient to extend the lifespan of the nematode C. elegans. Mild neuronal mitochondrial stress also caused an upregulation in mitochondrial stress signaling across distal tissues of the organism. We now report evidence for the requirement of a class of metabolic neurotransmitters in the dissemination of perceived mitochondrial stress. We also observe a neuron-specific epigenetic remodeling in response to mitochondrial dysfunction. We hypothesize that, after sensing metabolic stress, neurons transcriptionally remodel their gene expression patterns by activating a class of neuron-specific chromatin modifying enzymes. Transcriptional changes in the neurons then initiate a downstream neuroendocrine signaling event that is capable of activating mitochondrial stress responsive pathways across tissues and organs. This cascade of responses collectively serves to increase the metabolic fitness and lifespan of the organism.
Science Code(s)/Area of Science(s) Primary: 64 - Mitochondrial Disorders
Publications See publications associated with this Grant.
Program Officer Daniel Shaughnessy
to Top