Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

Your Environment. Your Health.

RIBOSE-SEQ PROFILE AND ANALYSIS OF RIBONUCLEOTIDES IN DNA OF OXIDATIVELY-STRESSED AND CANCER CELLS

Export to Word (http://www.niehs.nih.gov//portfolio/index.cfm/portfolio/grantdetail/grant_number/R01ES026243/format/word)
Principal Investigator: Storici, Francesca
Institute Receiving Award Georgia Institute Of Technology
Location Atlanta, GA
Grant Number R01ES026243
Funding Organization National Institute of Environmental Health Sciences
Award Funding Period 01 Aug 2016 to 30 Apr 2021
DESCRIPTION (provided by applicant): Project Summary Ribonucleoside monophosphates (rNMPs), the subunits of RNA, are the most common non-canonical nucleotides found in genomic DNA. Inactivation of ribonuclease (RNase) H2, which is the major player in the removal of rNMPs from nuclear DNA (nDNA), allowed detection of over one million rNMPs in the mouse genome and ~2,400 rNMPs in the budding yeast genome. rNMPs distort the DNA double helix, modulating or altering DNA functions and increasing DNA fragility and instability. There is a need to determine where rNMP sites are in DNA, especially in cells with abnormal genome stability, like cancer cells. We recently developed a method, ribose-seq, to map rNMPs present in genomic DNA (Koh et al., Nature Methods, 2015). We applied ribose-seq to yeast Saccharomyces cerevisiae RNase H2 deficient cells, and we revealed widespread but not random distribution of rNMPs with several hotspots in nDNA and mitochondrial DNA (mtDNA). A proven, though poorly explored, cause of rNMP inclusion in DNA is oxidative stress, which, through reactive oxygen species (ROS), converts deoxyribose to ribose both in the deoxyribonucleotide pool and within DNA. Moreover, ROS not only produce abasic DNA, which is repaired via the base excision repair (BER) pathway, but also abasic RNA. Because we recently demonstrated that the BER apurinic/apyrimidinic endonuclease Ape1 cleaves also abasic RNA, we aim to determine if BER is involved in removal of rNMPs from DNA. Currently, it is unknown whether and how the profile of rNMP incorporation in genomic DNA changes upon oxidative stress, and whether there is any link with cancer phenotype. Are there genomic sites (i.e. transcriptionally active regions) that are more prone to rNMP formation upon exposure to ROS? Is there a correlation between rNMP and mutation sites occurring in oxidatively stressed and/or cancer cells? In Aim 1, applying ribose-seq, we will reveal for the first time, the spectrum of rNMP incorporation in different conditions of oxidative stress in nDNA and mtDNA of S. cerevisiae RNase H2-deficient cells. The rNMP profiles will be analyzed and compared with those of the same yeast cells not exposed to the oxidative stressors, and also with mutation spectra of the same ROS-exposed cells. Because RNase H2 activity for rNMP removal was not found in mitochondria, mtDNA could be particularly sensitive to rNMP incorporation during oxidative stress. Thus, in Aim 2 we will perform profile and analysis of rNMPs in mtDNA of yeast and normal mammalian RNase H2-proficient cells exposed to oxidative stress and sensitized to it by using mutants and inhibitors of BER factors. rNMP maps will be also compared with mutation maps. In Aim 3, we will perform profile and analysis of rNMPs in mtDNA of cancer cells. Cancer cells from different human hepatic cancer cell lines, from a selection of human bioptic hepatocarcinoma samples (tumoral and distal liver tissues) and HeLa cells reconstituted with different functional variants of Ape1, will be processed to obtain purified mtDNA, which will be analyzed for rNMP distribution and hotspots of incorporation to identify significant biomarkers.
Science Code(s)/Area of Science(s) Primary: 09 - Genome Integrity
Publications See publications associated with this Grant.
Program Officer Michelle Heacock
Back
to Top