Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

Your Environment. Your Health.


Export to Word (
Principal Investigator: Haes, Amanda J.
Institute Receiving Award University Of Iowa
Location Iowa City, IA
Grant Number R01ES027145
Funding Organization National Institute of Environmental Health Sciences
Award Funding Period 01 Feb 2017 to 31 Jan 2022
DESCRIPTION (provided by applicant): PROJECT SUMMARY A serious public health threat to Native American communities in the Four Corners region of the US is chemical toxicity arising from exposure to uranium through water resources contaminated by abandoned mines. Chronic environmental exposure to uranium, a documented nephrotoxin, negatively impacts DNA repair, disrupts regulation of transcription factors and gene expression, and promotes apoptosis thus increasing the risk of cancer and other health problems. Effective risk management for uranium contamination requires reliable exposure assessment and biomonitoring tools for these impacted populations; however, the current analytical “gold standards” require laborious pretreatment steps and data collection and interpretation can be time-consuming, particularly in complex matrices such as urine and surface or ground water. As a result, the goal of this project is to reduce public health risks and negative side effects of uranium exposure for at risk populations through the development of enabling technology for the near real-time and trace detection of total uranium concentration in media relevant to exposure mechanisms and biomonitoring so that contamination threats can be dealt with in a timely manner. The innovation of this proposal is derived from our ability to confront the analytical challenge of uranium speciation, which often hinders the efficacy of standard detection and quantification methods with improved detection selectivity through functionalized electrospun polymer mats with detection sensitivity using surface enhanced Raman scattering (SERS). By using equilibrium speciation modeling to predict most probable uranium complexes in environmentally and biologically relevant media, we can guide the design of selective, high capacity sorbent materials that can be easily integrated into sensing platforms harnessing the sensitivity of SERS, which notably produces distinct signatures for different bound uranium species. Importantly, selectivity of uranium detection in synthetic urine has been demonstrated using the sorbent materials and SERS. This total systems approach allows for a highly sensitive and rapid approach for measuring not only total uranium in a sample but also the potential to distinguish distinct chemical forms using portable Raman spectrometers and simple barcode outputs will provide ease of use. While standard techniques provide isotopic signatures, aqueous speciation that is crucial for environmental remediation, chelation therapies and improved risk assessment cannot be attained. We anticipate the development of this novel sensing platform will produce empowering technologies that improve the health and overall quality of life of a currently overlooked and underserved population, the Navajo Nation and other neighboring communities.
Science Code(s)/Area of Science(s) Primary: 74 - Biosensors/Biomarkers
Publications See publications associated with this Grant.
Program Officer Yuxia Cui
to Top