Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

Your Environment. Your Health.

MECHANISTIC ROLE OF OBESITY IN BENZO(A)PYRENE-INITIATED CANCER

Export to Word (http://www.niehs.nih.gov//portfolio/index.cfm/portfolio/grantdetail/grant_number/R01ES030695/format/word)
Principal Investigator: Bernard, Jamie J
Institute Receiving Award Michigan State University
Location East Lansing, MI
Grant Number R01ES030695
Funding Organization National Institute of Environmental Health Sciences
Award Funding Period 13 Jul 2020 to 30 Apr 2024
DESCRIPTION (provided by applicant): Project Summary This R01 is about our discovery of a surprising and unexpected way in which adipose tissue increases the vulnerability of mammary epithelial cells to benzo(a)pyrene (BaP), a Group I-classified carcinogen, by inducing the aryl hydrocarbon receptor (AhR) protein. Upregulation of AhR expression and transcription is important in several, if not all, stages of malignant transformation. In particular, AhR is upregulated in human breast cancer. A major gap in AhR research is the nature of the signals that drive AhR induction and activation in breast carcinogenesis. Until now, no one might have expected that in the search for the unknown activators and inducers of AhR, that secretions from visceral adipose tissue (VAT) would be among them. Remarkably, our data shows that factors secreted from VAT can induce AhR in mammary epithelial cells, and AhR is also induced in mammary tissues of mice fed a high-fat diet. Our preliminary data also strongly suggest: 1) BaP and secretions from VAT, such as fibroblast growth factor-2 (FGF2), synergize to cause DNA damage and accelerated transformation of human mammary epithelial cells; and 2) AhR is a critical control point for BaP bioactivation in this synergistic process. Our central hypothesis is that factors secreted from human VAT will potentiate BaP metabolism by inducing AhR, resulting in increased carcinogenic metabolites (e.g. BPDE) and DNA damage, two well-known contributors to malignant transformation of human mammary epithelial cells. We will test this hypothesis in connection with human breast cancer. In aim 1, we will determine the impact of factors released from VAT on BaP metabolism and DNA damage in vitro. We will also determine what is in VAT that effects BaP metabolism and induces AhR. In aim 2, we will determine for the first time in vivo the impact of high-fat diet feeding on AhR-mediated BaP metabolism, DNA damage and mammary tumorigenesis using both acute and chronic exposures to BaP. For both aims, we will determine the role of FGFR1 signaling, the primary receptor for FGF2, on the AhR activation and metabolism of BaP using a FGFR1 inhibitor and a novel orthotopic model of FGFR1-driven mammary tumorigenesis. The expected outcomes of this research will be to identify the mechanisms and metabolic pathways by which BaP interacts with factors released from VAT in promoting DNA damage and breast cancer. BaP metabolites will be analyzed using a novel multiphoton imaging approach. Elucidating the unexpected and surprising connection between factors from human visceral adipose tissues and the bioactivation benzo(a)pyrene (BaP) will be a major advance in understanding why obesity heightens the risk of breast cancer.
Science Code(s)/Area of Science(s) Primary: 51 - Obesity
Secondary: 03 - Carcinogenesis/Cell Transformation
Publications See publications associated with this Grant.
Program Officer Thaddeus Schug
Back
to Top