Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

Your Environment. Your Health.

SYNERGISTIC MATERIAL-MICROBE INTERFACE TOWARDS FASTER, DEEPER, AND AIR-TOLERANT REDUCTIVE DEHALOGENATION

Export to Word (http://www.niehs.nih.gov//portfolio/index.cfm/portfolio/grantdetail/grant_number/R01ES032668/format/word)
Principal Investigator: Men, Yujie
Institute Receiving Award University Of California Riverside
Location Riverside, CA
Grant Number R01ES032668
Funding Organization National Institute of Environmental Health Sciences
Award Funding Period 01 Jan 2021 to 31 Oct 2025
DESCRIPTION (provided by applicant): Project Summary/Abstract Challenges exist in bioremediation of halogenated contaminants, including low donor utilization efficiency and slow dehalogenation, low dehalogenation activity and degree for the emerging per- and polyfluorinated substances, as well as the difficulty in simultaneously treating co-contaminants. To address those challenges, this project integrates advances in materials sciences and microbial reductive dehalogenation and proposes a synergistic materials-microbe interface that can achieve faster, deeper, and air-tolerant reductive dehalogenation. Charge transfer mechanisms in the proposed electricity-driven materials-microbe hybrid will be investigated, which will guide the design and optimization of novel nano- and micro-scale materials to enhance the mass-transport efficiency and accelerate dehalogenation. The local electron donor levels can be stably maintained at low levels, favoring dehalorespiring microorganisms over methanogens and homoacetogens, leading to enhanced electron donor utilization. A systems-level understanding of microorganisms enriched in the bioelectrochemical system and genes/enzymes responsible for deeper defluorination will be obtained with omics techniques. Novel reductive defluorination products/pathways and synergistic interactions between microbial and electrochemical defluorination will be elucidated using advanced analytical tools such as high-resolution mass spectrometry. Furthermore, an air-tolerant materials-microbe framework for reductive dehalogenation will be developed using a recently designed microwire array electrodes and implemented to achieve concurrent oxidation of the co-contaminant 1,4-dioxane in an open system. This project will significantly advance the mechanistic understanding of the accelerated and deeper reductive dehalogenation at the synergistic materials- microbe interface. This hybrid framework is powered by electricity that can be generated from sustainable solar energy and may lower the cost by reducing the requirement of fermentable organics and by combining the anaerobic and aerobic remediation processes. The successful demonstration of this new paradigm of bioremediation will potentially lead to future applications for cleaning up the halogenated contaminants and co- contaminants in subsurface environments. The developed materials-microbe framework is also highly transformable to the bioremediation processes of other environmental contaminants.
Science Code(s)/Area of Science(s) Primary: 25 - Superfund Basic Research (non- P42 center grants)
Secondary: 03 - Carcinogenesis/Cell Transformation
Publications No publications associated with this grant
Program Officer Heather Henry
Back
to Top