Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

Your Environment. Your Health.

XENOBIOTIC RECEPTORS IN MEDIATING THE ENVIRONMENTAL EFFECTS ON HUMAN DISEASE AND MORBIDITY

Export to Word (http://www.niehs.nih.gov//portfolio/index.cfm/portfolio/grantdetail/grant_number/R35ES030429/format/word)
Principal Investigator: Xie, Wen
Institute Receiving Award University Of Pittsburgh At Pittsburgh
Location Pittsburgh, PA
Grant Number R35ES030429
Funding Organization National Institute of Environmental Health Sciences
Award Funding Period 01 Aug 2019 to 31 May 2027
DESCRIPTION (provided by applicant): Title: Xenobiotic Receptors in Mediating the Environmental Effects on Human Disease and Morbidity Project Summary/Abstract: This R35 proposal is designed to consolidate our current NIEHS funded projects into one program with the focus on understanding the role of xenobiotic receptors in regulating the metabolism of xenobiotics and endobiotics and the implications of this regulation in human health. The human population is at an increasing risk of developing chronic diseases, such as fibrosis, metabolic syndrome, alcoholic liver disease, and neurologic disorders. Environmental factors, including environmental chemicals, are among the major contributing factors in the pathogenesis of these chronic diseases. As such, understanding the mechanisms by which environmental chemicals modify human physiology and pathophysiology will help to design therapeutic or preventive strategies to mitigate the pathogenic effect of environmental chemicals. Xenobiotic receptors, including the xenobiotic nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) and the PAS domain transcriptional factor aryl hydrocarbon receptor (AHR), are best known for their functions in sensing xenobiotic chemicals and regulating xenobiotic metabolism. Emerging evidence, mainly through the creation and characterization of gene knockout mice and identification of endogenous ligands, suggests that the xenobiotic receptors also have functions in regulating the homeostasis of endobiotics and impacting pathophysiology. Our overarching hypothesis is that xenobiotic receptors are critical environmental chemical-sensing transcriptional factors that mediate the environmental chemical effects on human disease and morbidity. Mechanistically, xenobiotic receptors impact the pathogenesis of human diseases by regulating the metabolism of xenobiotics and endobiotics in both the hepatic and extrahepatic tissues. We propose that the xenobiotic receptors are pivotal environmental modifiers that integrate signals from chemical exposures to the regulation of many aspects of human physiology. To test our hypothesis, we will assemble a highly experienced team and employ a broad spectrum of genetic and pharmacological tools, transdisciplinary approaches, and the expertise of an array of collaborators and clinician scientists to comprehensively define the roles that xenobiotic receptors play in environmentally influenced diseases, such as fibrosis, metabolic syndrome, alcoholic liver disease, and neurologic disorders. By understanding these pathways, we cannot only understand the environment-gene interactions and the implications of these interactions in human diseases, but also establish xenobiotic receptors and their target enzymes and transporters as potential therapeutic targets to manage these human diseases and morbidity. The insights gained from this R35 program can be used to design intervention strategies to manipulate these pathways via therapeutics or to guide human behavior or the human environment in a manner that is most beneficial to the sensitive populations. Over the next eight years, this R35 program will give us the freedom and power to make considerable advances in our understanding of xenobiotic receptors and how they influence human health. As the Principal Investigator, I am committed to devote 55% of my total effort to this R35 program, and all of my existing NIEHS funding will be consolidated into this grant if funded. I am confident that I can lead this R35 program, because I have studied xenobiotic receptors for two decades and have demonstrated a broad vision and made seminal contributions to our understanding of the toxicological and pathophysiological functions of xenobiotic receptors.
Science Code(s)/Area of Science(s) Primary: 52 - Immunology/Immunotoxicology
Secondary: 03 - Carcinogenesis/Cell Transformation
Publications See publications associated with this Grant.
Program Officer Michael Humble
Back
to Top