Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

Your Environment. Your Health.


Export to Word (
Principal Investigator: Rush, Margaret Andrews
Institute Receiving Award Gryphon Scientific, Llc
Location Takoma Park, MD
Grant Number R43ES030582
Funding Organization National Institute of Environmental Health Sciences
Award Funding Period 02 Apr 2019 to 31 Mar 2021
DESCRIPTION (provided by applicant): PROJECT SUMMARY/ABSTRACT The United States opioid crisis, referring to the rapid increase in the 2010s of both prescription and non-prescription opioid abuse in the United States, is a major public health issue, with overdose deaths from opioids reaching epidemic levels, surpassing the number of gun-related deaths in 2016. While heroin remains the main illicit opioid abused in the U.S., a recent dramatic increase in the availability of synthetic opioids (mainly fentanyl and fentanyl-like substances) up to 10,000 times more potent than morphine has placed first responders at risk of accidental overdose and even death. The extreme potency of these substances, which can be accidentally ingested, inhaled, or absorbed through the skin or via contact with mucous membranes, means that accidental contact with even a minuscule amount can pose a severe threat to first responders. Responders can be exposed to fentanyl not only when responding to overdoses, but also during the execution of search or arrest warrants and during the processing of drug or contaminated non-drug evidence. There is a clear need in the community for products to train first responders on how to effectively protect themselves while still performing their duties and providing timely and appropriate care. The computer-based Preventing Opioid Exposure Training (POET) will be an innovative learning product that teaches first responders about the risks of opioid exposures and how to recognize and manage these risks on the job. Training participants will learn to identify warning signs that they may be encountering a potential fentanyl exposure based on the signs and symptoms of a patient and/or the material observed at a scene. Then, the training will review risk assessment and selection of personal protective equipment (PPE) and guidelines for post-exposure treatment, clean-up, and decontamination. For Phase I, the training curriculum will be developed based on exposure guidelines published by federal agencies and other institutions, as well as interviews with stakeholders. This will be followed by usability testing of the prototype as well as a pre- and post-assessment of first responder knowledge gains at the end of training and three months later. This will contribute to shifting the paradigm of how novel training technologies can drive responder preparedness by using virtual worlds to teach first responders how to recognize and manage occupational risks. The potential commercial application of the POET application includes law enforcement officers at the local, state, and federal level, medical professionals (including EMTs, paramedics, and hospital staff), and other responders who face occupational opioid exposure risks.
Science Code(s)/Area of Science(s) Primary: 88 - Worker Education (U45)
Secondary: 03 - Carcinogenesis/Cell Transformation
Publications No publications associated with this grant
Program Officer Kathy Ahlmark
to Top