Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

Your Environment. Your Health.


Export to Word (
Principal Investigator: Tsukamoto, Takuji
Institute Receiving Award Chemica Technologies, Inc.
Location Portland, OR
Grant Number R44ES026024
Funding Organization National Institute of Environmental Health Sciences
Award Funding Period 01 Jun 2016 to 30 Apr 2021
DESCRIPTION (provided by applicant):  : The water treatment product developed in this SBIR program will give more people the opportunity to live healthier lives and strengthen communities by increasing available water resources. The contamination of drinking water is an age-old problem. In recent decades, the pollution of ground and drinking water by organic chemicals has attracted increasing attention all over the world as man-made toxins (pharmaceuticals, plasticizers, pesticides, disinfectant by-products, etc.) continue to enter the worlds' drinking water reservoirs via wastewater, agricultural runoff, storm water, air pollution, and polluted soil. Exposure to these toxins through drinking water is leading to chronic, complex diseases; the burden of which falls primarily on socioeconomically disadvantaged communities. Removal of organic chemicals from drinking water is imperative to protect the health of the world's populations. Traditional adsorption technologies do not have the structural sophistication to allow for the simultaneous removal of multiple complex chemicals. Other purification technologies (i.e. reverse osmosis membranes and hydroxyl radicals) have failed to provide a simple and cost-effective means to remove the wide spectrum of organic chemicals now found in drinking water supplies. What's missing from the $3B US residential treatment market is a simple and cost effective POU product for the wide spectrum of difficult to remove and highly toxic trace organic chemicals. Through this SBIR project, Chemica aims to bring a timely new tool to the field of water treatment/purification that specifically targets difficult to remove contaminants in an easy-to-use and affordable manner. This will be achieved through applying Chemica's proprietary surface modification techniques to a robust carbon fiber substrate. Chemica's novel fiber is easily scalable and can be tailored to meet users' specific needs. The goal for this SBIR program is to produce a prototype modular cartridge containing a robust adsorbent with 5x faster adsorption rates over existing adsorbents and lower lifecycle costs compared to alternative water purification technologies. This will be achieved through the following Specific Aims: PHASE I Specific Aim 1. Comparison of Functionalized Fiber Modules with Conventional Water Purifiers PHASE II Specific Aim 1. Optimization and Large-Scale Production of Functionalized Fiber Adsorbent PHASE II Specific Aim 2. Design and Manufacture of Prototype Module to House the Fiber Adsorbent PHASE II Specific Aim 3. Performance Characterization of the Fiber Adsorbent and Module in the Real World Key words: drinking water, emerging contaminants, toxicity, adsorbent, carbon, pharmaceuticals, plasticizers, pesticides, disinfectant by-products, coordination chemistry, organic chemistry, VOC, separation
Science Code(s)/Area of Science(s) Primary: 25 - Superfund Basic Research (non- P42 center grants)
Publications No publications associated with this grant
Program Officer Daniel Shaughnessy
to Top