Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Internet Explorer is no longer a supported browser.

This website may not display properly with Internet Explorer. For the best experience, please use a more recent browser such as the latest versions of Google Chrome, Microsoft Edge, and/or Mozilla Firefox. Thank you.

Your Environment. Your Health.


Export to Word (
Principal Investigator: Jordt, Sven-Eric
Institute Receiving Award Duke University
Location Durham, NC
Grant Number U01ES030672
Funding Organization National Institute of Environmental Health Sciences
Award Funding Period 01 Sep 2019 to 31 Aug 2022
DESCRIPTION (provided by applicant): Summary Chlorine gas has been used as a terrorist weapon, in warfare and has injured many Americans in transportation or industrial accidents. Despite its devastating effects, no mechanism-based treatment has been developed. In this application, we hypothesize that targeting the TRPA1 ion channel post-exposure will ameliorate the acute pulmonary, cardiovascular and neurological effects of chlorine, leading to decreased morbidity and improved recovery. TRPA1 is a chemical irritant receptor eliciting pain, edema, vasodilation, cardiac arrhythmia, inflammation and leukocyte infiltration. Our preliminary studies in mice show that TRPA1 inhibitors, when administered post-chlorine exposure, prevent the chlorine-induced decline of blood oxygenation, improve pulmonary function and mitigate inflammation. Here, we propose to test the efficacy of a 3rd generation TRPA1 inhibitor, found to block mouse, human and porcine TRPA1, in mouse and pig models of chlorine inhalation injury, with the goal to develop this compound as a future human countermeasure. The following aims are proposed: Aim 1: Screen potential therapeutic effects of a 3rd generation TRPA1 inhibitor in mouse models of Cl2 gas inhalation injury. Aim 2: Determine the pharmacokinetic and toxicological properties of TRPA1 inhibitor in pigs. Aim 3: Test the TRPA1 inhibitor in a pig model of chlorine gas inhalation injury
Science Code(s)/Area of Science(s) Primary: 37 - Counter-Terrorism
Secondary: 03 - Carcinogenesis/Cell Transformation
Publications See publications associated with this Grant.
Program Officer Srikanth Nadadur
to Top