Skip Navigation

Publication Detail

Title: Inhibition of inosine monophosphate dehydrogenase by sesquiterpene lactones.

Authors: Page, J D; Chaney, S G; Hall, I H; Lee, K H; Holbrook, D J

Published In Biochim Biophys Acta, (1987 Nov 06)

Abstract: Inosine monophosphate (IMP) dehydrogenase had previously been determined to be a likely target enzyme for the sesquiterpene lactones, a class of potential anti-neoplastic drugs. IMP dehydrogenase was purified approx. 770-fold from the P-388 lymphocytic leukemia tumor cell line. The Km values for the substrates, IMP and NAD, were determined to be 12 microM and 25 microM, respectively. Xanthine monophosphate (XMP) was shown to be a competitive inhibitor with a Ki of 67 microM. Mycophenolic acid gave mixed-type inhibition with a Ki of 8 nM for the noncompetitive component and a Ki of 2 nM for the competitive component. Dissociation constants (Kd) and rate constants for inhibition of IMP dehydrogenase by nine different sesquiterpene lactones were determined. The highest Kd was seen with 2,3-dihydrohelenalin while the lowest Kd was observed with bis-helenalinyl malonate. Binding of the drugs by IMP dehydrogenase increased as the size of the drug increased. Also, changes in structure at position 6 had a relatively large effect on the Kd. There was no correlation with hydrophobicity, as determined by octanol/water partition. The first-order rate constants for the reaction of the sesquiterpene lactones with IMP dehydrogenase (k1) and the second-order rate constants for the reaction of the sesquiterpene lactones with glutathione (k2) were also determined. The rate constants for most of the sesquiterpene lactones with the alpha-methylene-gamma-lactone moiety were similar and were approximately twice as great as the rate constants for those sesquiterpene lactones with only the alpha, beta-unsaturated cyclopentenone ring. Microlenin had approximately 5-times the reactivity of the other sesquiterpene lactones towards IMP dehydrogenase, but had approximately the same reactivity towards glutathione, suggesting that it was bound to the enzyme in a way which facilitated its reaction with one or more essential sulfhydryls. The same procedure was used for a series of N-substituted maleimide compounds with the N-substituent ranging in size from a methyl group to a benzyl group. The binding of the maleimide compounds was generally tighter than for the sesquiterpene lactones and there was an increase in binding with size.

PubMed ID: 2889474 Exiting the NIEHS site

MeSH Terms: Animals; Glutathione/metabolism; Humans; IMP Dehydrogenase/antagonists & inhibitors*; IMP Dehydrogenase/isolation & purification; Ketone Oxidoreductases/antagonists & inhibitors*; Kinetics; Lactones/pharmacology*; Leukemia P388/enzymology; Mycophenolic Acid/pharmacology; Ribonucleotides/metabolism; Sesquiterpenes/metabolism; Sesquiterpenes/pharmacology*; Tumor Cells, Cultured

Back
to Top