Skip Navigation

Publication Detail

Title: Rosiglitazone and 15-deoxy-Delta12,14-prostaglandin J2, PPARgamma agonists, differentially regulate cigarette smoke-mediated pro-inflammatory cytokine release in monocytes/macrophages.

Authors: Caito, Samuel; Yang, Se-Ran; Kode, Aruna; Edirisinghe, Indika; Rajendrasozhan, Saravanan; Phipps, Richard P; Rahman, Irfan

Published In Antioxid Redox Signal, (2008 Feb)

Abstract: Peroxisome Proliferator-Activated Receptor gamma (PPARgamma) ligands have the potential for use as anti-inflammatory agents in chronic airway diseases. We hypothesized that cigarette smoke (CS)-mediated pro-inflammatory cytokine release would be downregulated in the monocyte-macrophage cell line (MonoMac6) by synthetic and natural PPARgamma ligands. Surprisingly, treatment of MonoMac6 cells with the natural PPARgamma ligand 15-deoxy-Delta12,14-prostaglandin J2 led to increased cytokine (IL-8) release in response to either TNF-alpha or CS extract (CSE). However, exposure to rosiglitazone, a synthetic agonist, led to decreased TNF-alpha, but not CSE, mediated cytokine release. Cytokine release correlated with nuclear PPARgamma localization; CSE reduced the amount of activated PPARgamma located in the nucleus and formed aldehyde adducts as PPARgamma protein carbonyls. Furthermore, it was shown that PPARgamma interacts with the RelA/p65 subunit of NF-kappaB under TNF-alpha exposure conditions, but this interaction was disrupted by CS exposure, suggesting that CS blocks this important anti-inflammatory pathway involving PPARgamma. Thus, these new data show that activation of PPARgamma with natural or synthetic ligands have differential inhibitory effects on CS-mediated pro-inflammatory mediator release. These data have implications in designing therapies for treatment of COPD and pulmonary fibrosis.

PubMed ID: 17970647 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top