Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Origin and health impacts of emissions of toxic by-products and fine particles from combustion and thermal treatment of hazardous wastes and materials.

Authors: Cormier, Stephania A; Lomnicki, Slawo; Backes, Wayne; Dellinger, Barry

Published In Environ Health Perspect, (2006 Jun)

Abstract: High-temperature, controlled incineration and thermal treatment of contaminated soils, sediments, and wastes at Superfund sites are often preferred methods of remediation of contaminated sites under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 and related legislation. Although these methods may be executed safely, formation of toxic combustion or reaction by-products is still a cause of concern. Emissions of polycyclic aromatic hydrocarbons (PAHs) ; chlorinated hydrocarbons (CHCs) , including polychlorinated dibenzo-p-dioxins and dibenzofurans ; and toxic metals (e.g., chromium VI) have historically been the focus of combustion and health effects research. However, fine particulate matter (PM) and ultrafine PM, which have been documented to be related to cardiovascular disease, pulmonary disease, and cancer, have more recently become the focus of research. Fine PM and ultrafine PM are effective delivery agents for PAHs, CHCs, and toxic metals. In addition, it has recently been realized that brominated hydrocarbons (including brominated/chlorinated dioxins) , redox-active metals, and redox-active persistent free radicals are also associated with PM emissions from combustion and thermal processes. In this article, we discuss the origin of each of these classes of pollutants, the nature of their association with combustion-generated PM, and the mechanisms of their known and potential health impacts.

PubMed ID: 16759977 Exiting the NIEHS site

MeSH Terms: Catalysis; Child; Hazardous Substances*; Humans; Toxicity Tests*

Back
to Top