Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Transcriptional regulation of protein complexes within and across species.

Authors: Tan, Kai; Shlomi, Tomer; Feizi, Hoda; Ideker, Trey; Sharan, Roded

Published In Proc Natl Acad Sci U S A, (2007 Jan 23)

Abstract: Yeast two-hybrid and coimmunoprecipitation experiments have defined large-scale protein-protein interaction networks for many model species. Separately, systematic chromatin immunoprecipitation experiments have enabled the assembly of large networks of transcriptional regulatory interactions. To investigate the functional interplay between these two interaction types, we combined both within a probabilistic framework that models the cell as a network of transcription factors regulating protein complexes. This framework identified 72 putative coregulated complexes in yeast and allowed the prediction of 120 previously uncharacterized transcriptional interactions. Several predictions were tested by new microarray profiles, yielding a confirmation rate (58%) comparable with that of direct immunoprecipitation experiments. Furthermore, we extended our framework to a cross-species setting, identifying 24 coregulated complexes that were conserved between yeast and fly. Analyses of these conserved complexes revealed different conservation levels of their regulators and provided suggestive evidence that protein-protein interaction networks may evolve more slowly than transcriptional interaction networks. Our results demonstrate how multiple molecular interaction types can be integrated toward a global wiring diagram of the cell, and they provide insights into the evolutionary dynamics of protein complex regulation.

PubMed ID: 17227853 Exiting the NIEHS site

MeSH Terms: Animals; Diptera; Gene Expression Regulation*; Immunoprecipitation; Saccharomyces cerevisiae/genetics; Species Specificity; Transcription, Genetic*; Two-Hybrid System Techniques

Back
to Top