Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: A land use regression model for predicting ambient fine particulate matter across Los Angeles, CA.

Authors: Moore, D K; Jerrett, M; Mack, W J; Kunzli, N

Published In J Environ Monit, (2007 Mar)

Abstract: Land use regression (LUR) models have been used successfully for predicting local variation in traffic pollution, but few studies have explored this method for deriving fine particle exposure surfaces. The primary purpose of this method is to develop a LUR model for predicting fine particle or PM(2.5) mass over the five county metropolitan statistical area (MSA) of Los Angeles. PM(2.5) includes all particles with diameter less than or equal to 2.5 microns. In the Los Angeles MSA, 23 monitors of PM(2.5) were available in the year 2000. This study uses GIS to integrate data regarding land use, transportation and physical geography to derive a PM(2.5) dataset covering Los Angeles. Multiple linear regression was used to create the model for predicting the PM(2.5) surface. Our parsimonious model explained 69% of the variance in PM(2.5) with three predictors: (1) traffic density within 300 m, (2) industrial land area within 5000 m, and (3) government land area within 5000 m of the monitoring site. These results suggest the LUR method can refine exposure models for epidemiologic studies in a North American context.

PubMed ID: 17344950 Exiting the NIEHS site

MeSH Terms: Air Pollutants/adverse effects; Air Pollutants/analysis*; Air Pollution/adverse effects; Air Pollution/analysis; Cities*; Environmental Exposure*; Environmental Monitoring/methods*; Forecasting; Los Angeles; Models, Theoretical*; Particle Size; Particulate Matter/adverse effects; Particulate Matter/analysis*; Regression Analysis; Surface Properties; Urban Population

to Top