Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Arsenic exposure is associated with decreased DNA repair in vitro and in individuals exposed to drinking water arsenic.

Authors: Andrew, Angeline S; Burgess, Jefferey L; Meza, Maria M; Demidenko, Eugene; Waugh, Mary G; Hamilton, Joshua W; Karagas, Margaret R

Published In Environ Health Perspect, (2006 Aug)

Abstract: The mechanism(s) by which arsenic exposure contributes to human cancer risk is unknown ; however, several indirect cocarcinogenesis mechanisms have been proposed. Many studies support the role of As in altering one or more DNA repair processes. In the present study we used individual-level exposure data and biologic samples to investigate the effects of As exposure on nucleotide excision repair in two study populations, focusing on the excision repair cross-complement 1 (ERCC1) component. We measured drinking water, urinary, or toenail As levels and obtained cryopreserved lymphocytes of a subset of individuals enrolled in epidemiologic studies in New Hampshire (USA) and Sonora (Mexico). Additionally, in corroborative laboratory studies, we examined the effects of As on DNA repair in a cultured human cell model. Arsenic exposure was associated with decreased expression of ERCC1 in isolated lymphocytes at the mRNA and protein levels. In addition, lymphocytes from As-exposed individuals showed higher levels of DNA damage, as measured by a comet assay, both at baseline and after a 2-acetoxyacetylaminofluorene (2-AAAF) challenge. In support of the in vivo data, As exposure decreased ERCC1 mRNA expression and enhanced levels of DNA damage after a 2-AAAF challenge in cell culture. These data provide further evidence to support the ability of As to inhibit the DNA repair machinery, which is likely to enhance the genotoxicity and mutagenicity of other directly genotoxic compounds, as part of a cocarcinogenic mechanism of action.

PubMed ID: 16882524 Exiting the NIEHS site

MeSH Terms: Adult; Arsenic/adverse effects*; Arsenic/analysis*; Blotting, Western; Comet Assay; DNA Damage; DNA Repair/drug effects*; DNA-Binding Proteins/genetics; Electrophoresis, Polyacrylamide Gel; Endonucleases/genetics; Environmental Exposure; Female; Gene Expression/drug effects; Genetic Markers; Humans; Male; Mexico/epidemiology; Middle Aged; Nails/chemistry; New Hampshire/epidemiology; RNA/biosynthesis; RNA/genetics; Reverse Transcriptase Polymerase Chain Reaction; Water Supply/analysis*

Back
to Top