Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: The activation of M1 muscarinic receptor signaling induces neuronal differentiation in pyramidal hippocampal neurons.

Authors: VanDeMark, Kathryn L; Guizzetti, Marina; Giordano, Gennaro; Costa, Lucio G

Published In J Pharmacol Exp Ther, (2009 May)

Abstract: Muscarinic receptors have been proposed to play an important role during brain development by regulating cell survival, proliferation, and differentiation. This study investigated the effect of muscarinic receptor activation on prenatal rat hippocampal pyramidal neuron differentiation and the signal transduction pathways involved in this effect. The cholinergic agonist carbachol, after 24 h in vitro, increased the length of the axon, without affecting the length of minor neurites. Carbachol-induced axonal growth was also observed in pyramidal neurons from the neocortex but not in granule neurons from the cerebellum. The effect of carbachol was mediated by the M(1) subtype of muscarinic receptors. The Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester, the two protein kinase C (PKC) inhibitors 3-[1-[3-(dimethylaminopropyl]-1H-indol-3-yl]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione monohydrochloride (GF109203X) and 2-[8-[(dimethylamino)methyl]-6,7,8,9-tetrahydropyridol[1,2-a]indol-3-yl]-3-(1-methylindol-3-yl)maleimide (Ro-32-0432), and the extracellular signal-regulated kinase (ERK)1/2 inhibitors 2'-amino-3'-methoxyflavone (PD98059) and 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U0126) all blocked carbachol-induced axonal outgrowth. In addition, down-regulation of ERK1/2 with small interfering RNA abolished the neuritogenic effect of carbachol. These data suggest an involvement of Ca(2+), PKC, and ERK1/2 in carbachol-induced axonal growth. Carbachol indeed increased the release of Ca(2+) from intracellular stores and induced PKC and ERK1/2 activation. Additional experiments showed that PKC, but not Ca(2+), is involved in carbachol-induced ERK1/2 activation. Together, these results show that cholinergic stimulation of prenatal hippocampal pyramidal neurons accelerates axonal growth through the induction of Ca(2+) mobilization and the activation of PKC and especially of ERK1/2.

PubMed ID: 19190235 Exiting the NIEHS site

MeSH Terms: Animals; Astrocytes/cytology; Astrocytes/drug effects; Calcium/metabolism; Carbachol/pharmacology; Cell Differentiation*/drug effects; Cells, Cultured; Cerebellum/cytology; Cerebellum/embryology; Cerebellum/metabolism; Cholinergic Agonists/pharmacology; Hippocampus/cytology; Hippocampus/embryology; Hippocampus/metabolism; Male; Neocortex/cytology; Neocortex/embryology; Neocortex/metabolism; Neurites/drug effects; Neurites/ultrastructure; Neurons/cytology; Neurons/drug effects; Protein Kinase C/metabolism; Pyramidal Cells/cytology*; Pyramidal Cells/metabolism; Rats; Receptor, Muscarinic M1/metabolism*; Signal Transduction/drug effects

to Top