Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Inhibition of human prenatal biosynthesis of all-trans-retinoic acid by ethanol, ethanol metabolites, and products of lipid peroxidation reactions: a possible role for CYP2E1.

Authors: Khalighi, M; Brzezinski, M R; Chen, H; Juchau, M R

Published In Biochem Pharmacol, (1999 Apr 01)

Abstract: Biotransformation of all-trans-retinol (t-ROH) and all-trans-retinal (t-RAL) to all-trans-retinoic acid (t-RA) in human prenatal hepatic tissues (53-84 gestational days) was investigated with HPLC using human adult hepatic tissues as positive controls. Catalysis of the biotransformation of t-ROH by prenatal human cytosolic fractions resulted in accumulation of t-RAL with minimal t-RA. Oxidations of t-ROH catalyzed by prenatal cytosol were supported by both NAD+ and NADP+, although NAD+ was a much better cofactor. In contrast, catalysis of the oxidation of t-RAL to t-RA appeared to be solely NAD+ dependent. Substrate Km values for conversions of t-ROH to t-RAL and of t-RAL to t-RA were 82.4 and 65.8 microM, respectively. At concentrations of 10 and 90 mM, ethanol inhibited the conversion of t-ROH to t-RAL by 25 and 43%, respectively, but did not inhibit the conversion of t-RAL to t-RA significantly. In contrast, acetaldehyde reduced the conversion of t-RAL to t-RA by 25 and 87% at 0.1 and 10 mM respective concentrations. Several alcohols and aldehydes known to be generated from lipid peroxides also exhibited significant inhibition of t-RA biosynthesis in human prenatal hepatic tissues. Among the compounds tested, 4-hydroxy-2-nonenal (4-HNE) was highly effective in inhibiting the conversion of t-RAL to t-RA. A 20% inhibition was observed at a concentration of only 0.001 mM, and nearly complete inhibition was produced at 0.1 mM. Human fetal and embryonic hepatic tissues each exhibited significant CYP2E1 expression as assessed with chlorzoxazone 6-hydroxylation, a highly sensitive western blotting technique, and reverse transcriptase-polymerase chain reaction (PCR) (RT-PCR), suggesting that lipid peroxidation can be initiated via CYP2E1-catalyzed ethanol oxidation in human embryonic hepatic tissues. In summary, these studies suggest that ethanol may affect the biosynthesis of t-RA in human prenatal hepatic tissues directly and indirectly. Ethanol and its major oxidative metabolite, acetaldehyde, both inhibit the generation of t-RA. Concurrently, the CYP2E1-catalyzed oxidation of ethanol can initiate lipid peroxidation via generation of a variety of free radicals. The lipid peroxides thereby generated could then be further converted via CYP2E1-catalyzed reactions to alcohols and aldehydes, including 4-HNE, that act as potent inhibitors of t-RA synthesis.

PubMed ID: 10075087 Exiting the NIEHS site

MeSH Terms: Acetaldehyde/metabolism; Acetaldehyde/toxicity; Adult; Alcohols/toxicity; Biotransformation; Chlorzoxazone/metabolism; Cytochrome P-450 CYP2E1/metabolism*; Cytosol/metabolism; Ethanol/metabolism*; Ethanol/toxicity*; Female; Fetus/metabolism; Humans; In Vitro Techniques; Kinetics; Lipid Peroxidation*; Liver/metabolism; Oxidation-Reduction; Pregnancy; Retinaldehyde/metabolism; Tretinoin/metabolism*; Vitamin A/metabolism

to Top