Skip Navigation

Publication Detail

Title: Electrophilic peroxisome proliferator-activated receptor-gamma ligands have potent antifibrotic effects in human lung fibroblasts.

Authors: Ferguson, Heather E; Kulkarni, Ajit; Lehmann, Geniece M; Garcia-Bates, Tatiana M; Thatcher, Thomas H; Huxlin, Krystel R; Phipps, Richard P; Sime, Patricia J

Published In Am J Respir Cell Mol Biol, (2009 Dec)

Abstract: Pulmonary fibrosis is a progressive scarring disease with no effective treatment. Transforming growth factor (TGF)-beta is up-regulated in fibrotic diseases, where it stimulates differentiation of fibroblasts to myofibroblasts and production of excess extracellular matrix. Peroxisome proliferator-activated receptor (PPAR) gamma is a transcription factor that regulates adipogenesis, insulin sensitization, and inflammation. We report here that a novel PPARgamma ligand, 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO), is a potent inhibitor of TGF-beta-stimulated differentiation of human lung fibroblasts to myofibroblasts, and suppresses up-regulation of alpha-smooth muscle actin, fibronectin, collagen, and the novel myofibroblast marker, calponin. The inhibitory concentration causing a 50% decrease in aSMA for CDDO was 20-fold lower than the endogenous PPARgamma ligand, 15-deoxy-Delta(12,14)-prostaglandin J(2) (15 d-PGJ(2)), and 400-fold lower than the synthetic ligand, rosiglitazone. Pharmacologic and genetic approaches were used to demonstrate that CDDO mediates its activity via a PPARgamma-independent pathway. CDDO and 15 d-PGJ(2) contain an alpha/beta unsaturated ketone, which acts as an electrophilic center that can form covalent bonds with cellular proteins. Prostaglandin A(1) and diphenyl diselenide, both strong electrophiles, also inhibit myofibroblast differentiation, but a structural analog of 15 d-PGJ(2) lacking the electrophilic center is much less potent. CDDO does not alter TGF-beta-induced Smad or AP-1 signaling, but does inhibit acetylation of CREB binding protein/p300, a critical coactivator in the transcriptional regulation of TGF-beta-responsive genes. Overall, these data indicate that certain PPARgamma ligands, and other small molecules with electrophilic centers, are potent inhibitors of critical TGF-beta-mediated profibrogenic activities through pathways independent of PPARgamma. As the inhibitory concentration causing a 50% decrease in aSMA for CDDO is 400-fold lower than that in rosiglitazone, the translational potential of CDDO for treatment of fibrotic diseases is high.

PubMed ID: 19286977 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top