Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Nickel ions inhibit histone demethylase JMJD1A and DNA repair enzyme ABH2 by replacing the ferrous iron in the catalytic centers.

Authors: Chen, Haobin; Giri, Nitai Charan; Zhang, Ronghe; Yamane, Kenichi; Zhang, Yi; Maroney, Michael; Costa, Max

Published In J Biol Chem, (2010 Mar 05)

Abstract: Iron- and 2-oxoglutarate-dependent dioxygenases are a diverse family of non-heme iron enzymes that catalyze various important oxidations in cells. A key structural motif of these dioxygenases is a facial triad of 2-histidines-1-carboxylate that coordinates the Fe(II) at the catalytic site. Using histone demethylase JMJD1A and DNA repair enzyme ABH2 as examples, we show that this family of dioxygenases is highly sensitive to inhibition by carcinogenic nickel ions. We find that, with iron, the 50% inhibitory concentrations of nickel (IC(50) [Ni(II)]) are 25 microm for JMJD1A and 7.5 microm for ABH2. Without iron, JMJD1A is 10 times more sensitive to nickel inhibition with an IC(50) [Ni(II)] of 2.5 microm, and approximately one molecule of Ni(II) inhibits one molecule of JMJD1A, suggesting that nickel causes inhibition by replacing the iron. Furthermore, nickel-bound JMJD1A is not reactivated by excessive iron even up to a 2 mm concentration. Using x-ray absorption spectroscopy, we demonstrate that nickel binds to the same site in ABH2 as iron, and replacement of the iron by nickel does not prevent the binding of the cofactor 2-oxoglutarate. Finally, we show that nickel ions target and inhibit JMJD1A in intact cells, and disruption of the iron-binding site decreases binding of nickel ions to ABH2 in intact cells. Together, our results reveal that the members of this dioxygenase family are specific targets for nickel ions in cells. Inhibition of these dioxygenases by nickel is likely to have widespread impacts on cells (e.g. impaired epigenetic programs and DNA repair) and may eventually lead to cancer development.

PubMed ID: 20042601 Exiting the NIEHS site

MeSH Terms: AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase; Calorimetry; Catalytic Domain; Cell Line; DNA Repair Enzymes*/chemistry; DNA Repair Enzymes*/genetics; DNA Repair Enzymes*/metabolism; Dioxygenases*/chemistry; Dioxygenases*/genetics; Dioxygenases*/metabolism; Enzyme Inhibitors/chemistry*; Enzyme Inhibitors/metabolism; Humans; Iron/chemistry*; Isoenzymes*/chemistry; Isoenzymes*/genetics; Isoenzymes*/metabolism; Jumonji Domain-Containing Histone Demethylases*/chemistry; Jumonji Domain-Containing Histone Demethylases*/genetics; Jumonji Domain-Containing Histone Demethylases*/metabolism; Nickel/chemistry*; Nickel/metabolism; X-Ray Absorption Spectroscopy

to Top