Skip Navigation

Publication Detail

Title: Flow cytometric analysis of BDE 47 mediated injury to rainbow trout gill epithelial cells.

Authors: Shao, Jing; Dabrowski, Michael J; White, Collin C; Kavanagh, Terrance J; Gallagher, Evan P

Published In Aquat Toxicol, (2010 Apr 01)

Abstract: The polybrominated diphenyl ethers (PBDEs) are ubiquitous environmental contaminants whose residues are increasing in fish, wildlife and human tissues. However, relatively little is known regarding the mechanisms of cell injury caused by PBDE congeners in fish. In the present study, we employed flow cytometry-based analyses to understand the onset and mechanisms of cell injury in rainbow trout gill cells (RTgill-W1 cells) exposed to 2,2',4,4'-tetrabromodiphenyl ether (BDE 47). Substantial optimization and validation for flow cytometry protocols were required during assay development for the trout gill cell line. Exposure to micromolar concentrations of BDE 47 elicited a significant loss in RTgill-W1 cell viability that was accompanied by a decrease in NAD(P)H autofluorescence, a marker associated with disruption of cellular redox status. This loss in NAD(P)H content was accompanied by a decrease in nonyl acridine orange fluorescence, indicating mitochondrial membrane lipid peroxidation. Furthermore, low doses of BDE 47 altered cellular forward angle light scatter (FS, a measure of cell diameter or size) and side light scatter properties (SS, a measure of cellular internal complexity), consistent with the early stages of apoptosis. These changes were more pronounced at higher BDE 47 concentrations, which led to an increase in the percentage of cells undergoing frank apoptosis as evidenced by sub-G1 DNA content. Apoptosis was also observed at a relatively low dose (3.2muM) of BDE 47 if cells were exposed for an extended period of time (24h). Collectively, the results of these studies indicate that exposure of rainbow trout gill cells to BDE47 is associated with the induction of apoptosis likely originating from disruption of cellular redox status and mitochondrial oxidative injury. The current report extends observations in other species demonstrating that oxidative stress is an important mechanism of BDE 47 mediated cellular toxicity, and supports the use of oxidative stress-associated biomarkers in assessing the sublethal effects of PBDEs and their replacements in fish. The application of flow cytometry endpoints using fish cell lines should facilitate study of the mechanisms of chemical injury in aquatic species.

PubMed ID: 20053465 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top