Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Homologous recombination prevents methylation-induced toxicity in Escherichia coli.

Authors: Nowosielska, Anetta; Smith, Stephen A; Engelward, Bevin P; Marinus, M G

Published In Nucleic Acids Res, (2006)

Abstract: Methylating agents such as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and methyl methane sulfonate (MMS) produce a wide variety of N- and O-methylated bases in DNA, some of which can block replication fork progression. Homologous recombination is a mechanism by which chromosome replication can proceed despite the presence of lesions. The two major recombination pathways, RecBCD and RecFOR, which repair double-strand breaks (DSBs) and single-strand gaps respectively, are needed to protect against toxicity with the RecBCD system being more important. We find that recombination-deficient cell lines, such as recBCD recF, and ruvC recG, are as sensitive to the cytotoxic effects of MMS and MNNG as the most base excision repair (BER)-deficient (alkA tag) isogenic mutant strain. Recombination and BER-deficient double mutants (alkA tag recBCD) were more sensitive to MNNG and MMS than the single mutants suggesting that homologous recombination and BER play essential independent roles. Cells deleted for the polA (DNA polymerase I) or priA (primosome) genes are as sensitive to MMS and MNNG as alkA tag bacteria. Our results suggest that the mechanism of cytotoxicity by alkylating agents includes the necessity for homologous recombination to repair DSBs and single-strand gaps produced by DNA replication at blocking lesions or single-strand nicks resulting from AP-endonuclease action.

PubMed ID: 16670432 Exiting the NIEHS site

MeSH Terms: Adenosine Triphosphatases/genetics; Alkylating Agents/toxicity*; DNA Helicases/genetics; DNA Methylation*; DNA Polymerase I/genetics; DNA Repair*; Escherichia coli Proteins; Escherichia coli/drug effects; Escherichia coli/genetics*; Genes, Bacterial; Methyl Methanesulfonate/toxicity; Methylnitronitrosoguanidine/toxicity; Mutation; Recombination, Genetic*

to Top