Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: A comparison of multiple imputation and fully augmented weighted estimators for Cox regression with missing covariates.

Authors: Qi, Lihong; Wang, Ying-Fang; He, Yulei

Published In Stat Med, (2010 Nov 10)

Abstract: Several approaches exist for handling missing covariates in the Cox proportional hazards model. The multiple imputation (MI) is relatively easy to implement with various software available and results in consistent estimates if the imputation model is correct. On the other hand, the fully augmented weighted estimators (FAWEs) recover a substantial proportion of the efficiency and have the doubly robust property. In this paper, we compare the FAWEs and the MI through a comprehensive simulation study. For the MI, we consider the multiple imputation by chained equation and focus on two imputation methods: Bayesian linear regression imputation and predictive mean matching. Simulation results show that the imputation methods can be rather sensitive to model misspecification and may have large bias when the censoring time depends on the missing covariates. In contrast, the FAWEs allow the censoring time to depend on the missing covariates and are remarkably robust as long as getting either the conditional expectations or the selection probability correct due to the doubly robust property. The comparison suggests that the FAWEs show the potential for being a competitive and attractive tool for tackling the analysis of survival data with missing covariates.

PubMed ID: 20806403 Exiting the NIEHS site

MeSH Terms: Analysis of Variance; Autistic Disorder/complications; Autistic Disorder/etiology; Autistic Disorder/genetics; Bias; Computer Simulation; Data Interpretation, Statistical*; Environmental Pollutants/adverse effects; Halogenated Diphenyl Ethers/adverse effects; Humans; Language Disorders/etiology; Male; Models, Statistical; Proportional Hazards Models*; Regression Analysis*; Risk Assessment

to Top