Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Rewiring of genetic networks in response to DNA damage.

Authors: Bandyopadhyay, Sourav; Mehta, Monika; Kuo, Dwight; Sung, Min-Kyung; Chuang, Ryan; Jaehnig, Eric J; Bodenmiller, Bernd; Licon, Katherine; Copeland, Wilbert; Shales, Michael; Fiedler, Dorothea; Dutkowski, Janusz; Guénolé, Aude; van Attikum, Haico; Shokat, Kevan M; Kolodner, Richard D; Huh, Won-Ki; Aebersold, Ruedi; Keogh, Michael-Christopher; Krogan, Nevan J; Ideker, Trey

Published In Science, (2010 Dec 03)

Abstract: Although cellular behaviors are dynamic, the networks that govern these behaviors have been mapped primarily as static snapshots. Using an approach called differential epistasis mapping, we have discovered widespread changes in genetic interaction among yeast kinases, phosphatases, and transcription factors as the cell responds to DNA damage. Differential interactions uncover many gene functions that go undetected in static conditions. They are very effective at identifying DNA repair pathways, highlighting new damage-dependent roles for the Slt2 kinase, Pph3 phosphatase, and histone variant Htz1. The data also reveal that protein complexes are generally stable in response to perturbation, but the functional relations between these complexes are substantially reorganized. Differential networks chart a new type of genetic landscape that is invaluable for mapping cellular responses to stimuli.

PubMed ID: 21127252 Exiting the NIEHS site

MeSH Terms: Chromatin/metabolism; DNA Damage*; DNA Repair/genetics*; DNA, Fungal/genetics; Epistasis, Genetic*; Gene Regulatory Networks*; Genes, Fungal; Histones/genetics; Histones/metabolism; Methyl Methanesulfonate/pharmacology; Mitogen-Activated Protein Kinases/genetics; Mitogen-Activated Protein Kinases/metabolism; Mutagens/pharmacology; Mutation; Phosphoprotein Phosphatases/genetics; Phosphoprotein Phosphatases/metabolism; Protein Interaction Mapping; Protein-Serine-Threonine Kinases/genetics; Protein-Serine-Threonine Kinases/metabolism; Saccharomyces cerevisiae Proteins/genetics; Saccharomyces cerevisiae Proteins/metabolism*; Saccharomyces cerevisiae/genetics*; Saccharomyces cerevisiae/metabolism*; Signal Transduction; Transcription Factors/genetics; Transcription Factors/metabolism

to Top