Skip Navigation

Publication Detail

Title: Interaction of H+ with the extracellular and intracellular aspects of hMATE1.

Authors: Dangprapai, Yodying; Wright, Stephen H

Published In Am J Physiol Renal Physiol, (2011 Sep)

Abstract: Human multidrug and toxin extrusion 1 (hMATE1, SLC47A1) is a major candidate for being the molecular identity of organic cation/proton (OC/H(+)) exchange activity in the luminal membrane of renal proximal tubules. Although physiological function of hMATE1 supports luminal OC efflux, the kinetics of hMATE1-mediated OC transport have typically been characterized through measurement of uptake, i.e., the interaction between outward-facing hMATE1 and OCs. To examine kinetics of hMATE1-mediated transport in a more physiologically relevant direction, i.e., an interaction between inward-facing hMATE1 and cytoplasmic substrates, we measured the time course of hMATE1-mediated efflux of the prototypic MATE1 substrate, [(3)H]1-methyl-4-phenylpyridinium, under a variety of intra- and extracellular pH conditions, from Chinese hamster ovary cells that stably expressed the transporter. In this study, we showed that an IC(50)/K(i) for interaction between extracellular H(+) and outward-facing hMATE1 determined from conventional uptake experiments [12.9 ± 1.23 nM (pH 7.89); n = 9] and from the efflux protocol [14.7 ± 3.45 nM (pH 7.83); n = 3] was not significantly different (P = 0.6). Furthermore, kinetics of interaction between intracellular H(+) and inward-facing hMATE1 determined using the efflux protocol revealed an IC(50) for H(+) of 11.5 nM (pH 7.91), consistent with symmetrical interactions of H(+) with the inward-facing and outward-facing aspects of hMATE1.

PubMed ID: 21613419 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top