Skip Navigation

Publication Detail

Title: Mercuric ion attenuates nuclear factor-kappaB activation and DNA binding in normal rat kidney epithelial cells: implications for mercury-induced nephrotoxicity.

Authors: Dieguez-Acuña, F J; Ellis, M E; Kushleika, J; Woods, J S

Published In Toxicol Appl Pharmacol, (2001 Jun 15)

Abstract: Mercuric ion (Hg(2+)), one of the strongest thiol-binding agents known, mediates the toxicity associated with elemental, inorganic, and organic mercurial compounds. Studies of cellular events associated with Hg(2+) toxicity have focused largely on disruption of cell membranes and impairment of mitochondrial functions. In contrast, few studies have sought to define the specific molecular mechanisms through which Hg(2+) might affect toxicity via alteration of thiol-dependent signal transduction pathways that regulate cell proliferation and survival. Of particular interest in this regard is the effect of Hg(2+) on nuclear factor-kappaB (NF-kappaB), a pleiotropic transcriptional factor that is known to require reduced cysteine moieties at critical steps of activation and DNA binding. Here, we evaluated the effects of Hg(2+) on the expression of NF-kappaB in normal rat kidney epithelial (NRK52E) cells, a principal target of Hg(2+) toxicity. The lipopolysaccharide (LPS)-inducible form of NF-kappaB was readily detected in kidney cells and has been characterized as the p50p65 heterodimer. NF-kappaB-DNA binding was prevented in a dose-related manner by Hg(2+) (0-55 microM) in vitro when added to DNA binding reactions containing the nonthiol reducing agent Tris(2-carboxyethyl)phosphine hydrochloride (TCEP). Similarly, Hg(2+) at the same concentrations prevented DNA binding of a human recombinant wild-type p50p50 homodimer in binding reactions, and this effect was attenuated using a mutant form of the p50 protein containing a cys(62)-->ser(62) mutation. The inhibition of p50-DNA binding by Hg(2+) was reversible in a dose-related manner in vitro by competitive thiols DTT, GSH, and l-cysteine in binding reactions. In contrast, competitive thiols added to nuclear binding reactions were unable to reverse attenuation of LPS-mediated NF-kappaB-DNA binding affinity when cells were pretreated in vivo with Hg(2+) at concentrations as low as 2 microM prior to LPS administration. Immunoblot analyses indicted that Hg(2+) pretreatment of kidney cells substantially diminished, in a dose-related manner, the concentration of p65 translocated into the nucleus following LPS administration. Additionally, Hg(2+) pretreatment impaired both the phosphorylation and degradation of IkappaBalpha, suggesting a specific effect on NF-kappaB activation at the level of IkappaBalpha proteolysis. Finally, Hg(2+) at concentrations as low as 5 microM significantly diminished NF-kappaB-mediated transcriptional activity when administered to kidney cells transiently transfected with an NF-kappaB-driven luciferase reporter gene (pLuc-4xNF-kappaB) prior to LPS treatment. These findings demonstrate that Hg(2+), at low cellular concentrations, attenuates NF-kappaB activation at sites associated with IkappaBalpha phosphorylation and degradation, nuclear translocation of the p50p65 heterodimer, and association of p50-cys(62) with the DNA kappaB binding site. Attenuation of NF-kappaB activation by Hg(2+) through these mechanisms may underlie apoptotic or other cytotoxic responses that are known to be associated with low level Hg(2+) exposure in kidney epithelial cells.

PubMed ID: 11437639 Exiting the NIEHS site

MeSH Terms: Animals; Binding, Competitive; Biological Transport/drug effects; Cell Line; Cell Nucleus/metabolism; Cysteine/pharmacology; DNA-Binding Proteins/metabolism; DNA/metabolism*; Dithiothreitol/pharmacology; Epithelial Cells/drug effects; Epithelial Cells/metabolism; Escherichia coli; Glutathione/pharmacology; I-kappa B Proteins*; Kidney Diseases/chemically induced*; Kidney/drug effects*; Kidney/metabolism*; Lipopolysaccharides/pharmacology; Luciferases/genetics; Mercury/metabolism; Mercury/pharmacology*; Mercury/toxicity*; NF-kappa B/chemistry; NF-kappa B/genetics; NF-kappa B/metabolism*; Phosphorylation; Rats; Transcription, Genetic/drug effects; Transfection

Back
to Top