Skip Navigation

Publication Detail

Title: Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals.

Authors: Goodrich, Jaclyn M; Wang, Yi; Gillespie, Brenda; Werner, Robert; Franzblau, Alfred; Basu, Niladri

Published In Toxicol Appl Pharmacol, (2011 Dec 1)

Abstract: Mercury is a potent toxicant of concern to both the general public and occupationally exposed workers (e.g., dentists). Recent studies suggest that several genes mediating the toxicokinetics of mercury are polymorphic in humans and may influence inter-individual variability in mercury accumulation. This work hypothesizes that polymorphisms in key glutathione synthesizing enzyme, glutathione S-transferase, and selenoprotein genes underlie inter-individual differences in mercury body burden as assessed by analytical mercury measurement in urine and hair, biomarkers of elemental mercury and methylmercury, respectively. Urine and hair samples were collected from a population of dental professionals (n=515), and total mercury content was measured. Average urine (1.06±1.24 microg/L) and hair mercury levels (0.49±0.63 microg/g) were similar to national U.S. population averages. Taqman assays were used to genotype DNA from buccal swab samples at 15 polymorphic sites in genes implicated in mercury metabolism. Linear regression modeling assessed the ability of polymorphisms to modify the relationship between mercury biomarker levels and exposure sources (e.g., amalgams, fish consumption). Five polymorphisms were significantly associated with urine mercury levels (GSTT1 deletion), hair mercury levels (GSTP1-105, GSTP1-114, GSS 5'), or both (SEPP1 3'UTR). Overall, this study suggests that polymorphisms in selenoproteins and glutathione-related genes may influence elimination of mercury in the urine and hair or mercury retention following exposures to elemental mercury (via dental amalgams) and methylmercury (via fish consumption).

PubMed ID: 21967774 Exiting the NIEHS site

MeSH Terms: Adult; Biomarkers/urine; Dental Staff*; Dentists*; Female; Glutathione S-Transferase pi/genetics*; Glutathione S-Transferase pi/urine; Glutathione Transferase/genetics*; Glutathione Transferase/urine; Hair/chemistry; Hair/drug effects; Humans; Male; Mercury/adverse effects*; Mercury/urine; Methylmercury Compounds/adverse effects; Methylmercury Compounds/urine; Michigan/epidemiology; Middle Aged; Occupational Exposure/adverse effects; Polymorphism, Genetic/drug effects; Polymorphism, Genetic/genetics; Selenoproteins/genetics*; Selenoproteins/urine

Back
to Top