Skip Navigation

Publication Detail

Title: Emission factors, size distributions, and emission inventories of carbonaceous particulate matter from residential wood combustion in rural China.

Authors: Guofeng, Shen; Siye, Wei; Wen, Wei; Yanyan, Zhang; Yujia, Min; Bin, Wang; Rong, Wang; Wei, Li; Huizhong, Shen; Ye, Huang; Yifeng, Yang; Wei, Wang; Xilong, Wang; Xuejun, Wang; Shu, Tao

Published In Environ Sci Technol, (2012 Apr 03)

Abstract: Published emission factors (EFs) often vary significantly, leading to high uncertainties in emission estimations. There are few reliable EFs from field measurements of residential wood combustion in China. In this study, 17 wood fuels and one bamboo were combusted in a typical residential stove in rural China to measure realistic EFs of particulate matter (PM), organic carbon (OC), and elemental carbon (EC), as well as to investigate the influence of fuel properties and combustion conditions on the EFs. Measured EFs of PM, OC, and EC (EF(PM), EF(OC), and EF(EC), respectively) were in the range of 0.38-6.4, 0.024-3.0, and 0.039-3.9 g/kg (dry basis), with means and standard derivation of 2.2 ± 1.2, 0.62 ± 0.64, and 0.83 ± 0.69 g/kg, respectively. Shrubby biomass combustion produced higher EFs than tree woods, and both species had lower EFs than those of indoor crop residue burning (p < 0.05). Significant correlations between EF(PM), EF(OC), and EF(EC) were expected. By using a nine-stage cascade impactor, it was shown that size distributions of PM emitted from tree biomass combustions were unimodal with peaks at a diameter less than 0.4 μm (PM(0.4)), much finer than the PM from indoor crop residue burning. Approximately 79.4% of the total PM from tree wood combustion was PM with a diameter less than 2.1 μm (PM(2.1)). PM size distributions for shrubby biomasses were slightly different from those for tree fuels. On the basis of the measured EFs, total emissions of PM, OC, and EC from residential wood combustion in rural China in 2007 were estimated at about 303, 75.7, and 92.0 Gg.

PubMed ID: 22380753 Exiting the NIEHS site

MeSH Terms: Air Pollutants/analysis*; Carbon/analysis*; China; Fires*; Geography; Household Articles*; Humidity; Organic Chemicals/analysis; Particle Size*; Particulate Matter/analysis*; Rural Population; Volatilization; Wood/chemistry*

Back
to Top