Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Evolutionary history and adaptation from high-coverage whole-genome sequences of diverse African hunter-gatherers.

Authors: Lachance, Joseph; Vernot, Benjamin; Elbers, Clara C; Ferwerda, Bart; Froment, Alain; Bodo, Jean-Marie; Lema, Godfrey; Fu, Wenqing; Nyambo, Thomas B; Rebbeck, Timothy R; Zhang, Kun; Akey, Joshua M; Tishkoff, Sarah A

Published In Cell, (2012 Aug 03)

Abstract: To reconstruct modern human evolutionary history and identify loci that have shaped hunter-gatherer adaptation, we sequenced the whole genomes of five individuals in each of three different hunter-gatherer populations at > 60× coverage: Pygmies from Cameroon and Khoesan-speaking Hadza and Sandawe from Tanzania. We identify 13.4 million variants, substantially increasing the set of known human variation. We found evidence of archaic introgression in all three populations, and the distribution of time to most recent common ancestors from these regions is similar to that observed for introgressed regions in Europeans. Additionally, we identify numerous loci that harbor signatures of local adaptation, including genes involved in immunity, metabolism, olfactory and taste perception, reproduction, and wound healing. Within the Pygmy population, we identify multiple highly differentiated loci that play a role in growth and anterior pituitary function and are associated with height.

PubMed ID: 22840920 Exiting the NIEHS site

MeSH Terms: African Continental Ancestry Group/genetics*; Evolution, Molecular; Genetics, Medical; Genome, Human*; High-Throughput Nucleotide Sequencing; Human Activities; Humans; Polymorphism, Single Nucleotide*; Sequence Analysis, DNA

to Top