Skip Navigation

Publication Detail

Title: Heavy metal lead exposure, osteoporotic-like phenotype in an animal model, and depression of Wnt signaling.

Authors: Beier, Eric E; Maher, Jason R; Sheu, Tzong-Jen; Cory-Slechta, Deborah A; Berger, Andrew J; Zuscik, Michael J; Puzas, J Edward

Published In Environ Health Perspect, (2013 Jan)

Abstract: Exposure to lead (Pb) from environmental and industrial sources remains an overlooked serious public health risk. Elucidating the effect of Pb on bone cell function is therefore critical for understanding its risk associated with diseases of low bone mass.We tested the hypothesis that Pb negatively affects bone mass. We also assessed the underlying mechanisms of Pb on bone signaling pathways.We used a model of low-level Pb exposure in a rodent beginning before conception and continuing over 18 months. We characterized the effect of Pb on bone quality using dual-energy X-ray absorptiometry (DXA), micro-computed tomography, Raman spectroscopy, and histology. We assessed the effect of Pb on bone and adipocyte formation by mineral deposition, lipid droplet formation, and Western blot and RNA analysis.Pb-exposed animals had decreased bone mass that resulted in bones that were more susceptible to fracture. Pb decreased osteoblastic cell number leading to a depression of bone formation. Accompanying this, Pb exposure elevated sclerostin protein levels in the skeleton, and correspondingly reduced levels of β-catenin and Runx2 in stromal precursor cells. Pb also increased skeletal expression of peroxisome proliferator-activated receptor-γ (PPAR-γ). These results indicate a shift in mesenchymal differentiation wherein Pb promoted enhanced adipogenesis and decreased osteoblastogenesis. Substantial differences in bone marrow composition were observed, highlighted by an increase in adipocytes.The disruption Pb has on bone mass and bone homeostasis is principally explained by inhibition of the Wnt/β-catenin pathway, which may provide a molecular basis for novel therapeutic strategies to combat Pb-induced bone pathologies.

PubMed ID: 23086611 Exiting the NIEHS site

MeSH Terms: Animals; Bone Density/drug effects*; Lead/toxicity*; Mesenchymal Stromal Cells/drug effects; Osteoporosis/chemically induced*; Osteoporosis/metabolism*; Rats; Signal Transduction/drug effects; Wnt Proteins/genetics; Wnt Proteins/metabolism*

Back
to Top