Skip Navigation

Publication Detail

Title: Experimental Design for One Dimensional Electrolytic Reactive Barrier for Remediation of Munition Constituent in Groundwater.

Authors: Gent, David B; Wani, Altaf; Alshawabkeh, Akram N

Published In Electrochim Acta, (2012 Dec 30)

Abstract: A combination of direct electrochemical reduction and in-situ alkaline hydrolysis has been proposed to decompose energetic contaminants such as 1,3,5-Trinitroperhydro- 1,3,5-triazine and 2,4,6-Trinitrotoluene (RDX) in deep aquifers. This process utilizes natural groundwater convection to carry hydroxide produced by an upstream cathode to remove the contaminant at the cathode as well as in the pore water downstream as it migrates toward the anode. Laboratory evaluation incorporated fundamental principles of column design coupled with reactive contaminant modeling including electrokinetics transport. Batch and horizontal sand-packed column experiments included both alkaline hydrolysis and electrochemical treatment to determine RDX decomposition reaction rate coefficients. The sand packed columns simulated flow through a contaminated aquifer with a seepage velocity of 30.5 cm/day. Techniques to monitor and record the transient electric potential, hydroxide transport and contaminant concentration within the column were developed. The average reaction rate coefficients for both the alkaline batch (0.0487 hr(-1)) and sand column (0.0466 hr(-1)) experiments estimated the distance between the cathode and anode required to decompose 0.5 mg/L RDX to the USEPA drinking water lifetime Health Advisory level of 0.002 mg/L to be 145 and 152 cm.

PubMed ID: 23472044 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top