Skip Navigation

Publication Detail

Title: 8-Oxoguanine DNA glycosylase-1 links DNA repair to cellular signaling via the activation of the small GTPase Rac1.

Authors: Hajas, Gyorgy; Bacsi, Attila; Aguilera-Aguirre, Leopoldo; Hegde, Muralidhar L; Tapas, K Hazra; Sur, Sanjiv; Radak, Zsolt; Ba, Xueqing; Boldogh, Istvan

Published In Free Radic Biol Med, (2013 Aug)

Abstract: 8-Oxo-7,8-dihydroguanine (8-oxoG) is one of the most abundant DNA base lesions induced by reactive oxygen species (ROS). Accumulation of 8-oxoG in the mammalian genome is considered a marker of oxidative stress, to be causally linked to inflammation, and is thought to contribute to aging processes and various aging-related diseases. Unexpectedly, mice that lack 8-oxoguanine DNA glycosylase-1 (OGG1) activity and accumulate 8-oxoG in their genome have a normal phenotype and longevity; in fact, they show increased resistance to both inflammation and oxidative stress. OGG1 excises and generates free 8-oxoG base during DNA base-excision repair (BER) processes. In the present study, we report that in the presence of the 8-oxoG base, OGG1 physically interacts with guanine nucleotide-free and GDP-bound Rac1 protein. This interaction results in rapid GDP→GTP, but not GTP→GDP, exchange in vitro. Importantly, a rise in the intracellular 8-oxoG base levels increases the proportion of GTP-bound Rac1. In turn Rac1-GTP mediates an increase in ROS levels via nuclear membrane-associated NADPH oxidase type 4. These results show a novel mechanism by which OGG1 in complex with 8-oxoG is linked to redox signaling and cellular responses.

PubMed ID: 23612479 Exiting the NIEHS site

MeSH Terms: Animals; DNA Glycosylases/physiology*; DNA Repair*; Female; Guanine/analogs & derivatives; Guanine/pharmacology; Mice; Mice, Inbred BALB C; NADPH Oxidase 4; NADPH Oxidases/analysis; Neuropeptides/analysis; Neuropeptides/physiology*; Reactive Oxygen Species/metabolism; Signal Transduction*; rac1 GTP-Binding Protein/analysis; rac1 GTP-Binding Protein/physiology*

Back
to Top