Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Uncertainty in Propensity Score Estimation: Bayesian Methods for Variable Selection and Model Averaged Causal Effects.

Authors: Zigler, Corwin Matthew; Dominici, Francesca

Published In J Am Stat Assoc, (2014 Jan 01)

Abstract: Causal inference with observational data frequently relies on the notion of the propensity score (PS) to adjust treatment comparisons for observed confounding factors. As decisions in the era of "big data" are increasingly reliant on large and complex collections of digital data, researchers are frequently confronted with decisions regarding which of a high-dimensional covariate set to include in the PS model in order to satisfy the assumptions necessary for estimating average causal effects. Typically, simple or ad-hoc methods are employed to arrive at a single PS model, without acknowledging the uncertainty associated with the model selection. We propose three Bayesian methods for PS variable selection and model averaging that 1) select relevant variables from a set of candidate variables to include in the PS model and 2) estimate causal treatment effects as weighted averages of estimates under different PS models. The associated weight for each PS model reflects the data-driven support for that model's ability to adjust for the necessary variables. We illustrate features of our proposed approaches with a simulation study, and ultimately use our methods to compare the effectiveness of surgical vs. nonsurgical treatment for brain tumors among 2,606 Medicare beneficiaries. Supplementary materials are available online.

PubMed ID: 24696528 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top