Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Molecular basis for effects of carcinogenic heavy metals on inducible gene expression.

Authors: Hamilton, J W; Kaltreider, R C; Bajenova, O V; Ihnat, M A; McCaffrey, J; Turpie, B W; Rowell, E E; Oh, J; Nemeth, M J; Pesce, C A; Lariviere, J P

Published In Environ Health Perspect, (1998 Aug)

Abstract: Certain forms of the heavy metals arsenic and chromium are considered human carcinogens, although they are believed to act through very different mechanisms. Chromium(VI) is believed to act as a classic and mutagenic agent, and DNA/chromatin appears to be the principal target for its effects. In contrast, arsenic(III) is considered nongenotoxic, but is able to target specific cellular proteins, principally through sulfhydryl interactions. We had previously shown that various genotoxic chemical carcinogens, including chromium (VI), preferentially altered expression of several inducible genes but had little or no effect on constitutive gene expression. We were therefore interested in whether these carcinogenic heavy metals might target specific but distinct sites within cells, leading to alterations in gene expression that might contribute to the carcinogenic process. Arsenic(III) and chromium(VI) each significantly altered both basal and hormone-inducible expression of a model inducible gene, phosphoenolpyruvate carboxykinase (PEPCK), at nonovertly toxic doses in the chick embryo in vivo and rat hepatoma H411E cells in culture. We have recently developed two parallel cell culture approaches for examining the molecular basis for these effects. First, we are examining the effects of heavy metals on expression and activation of specific transcription factors known to be involved in regulation of susceptible inducible genes, and have recently observed significant but different effects of arsenic(III) and chromium(VI) on nuclear transcription factor binding. Second, we have developed cell lines with stably integrated PEPCK promoter-luciferase reporter gene constructs to examine effects of heavy metals on promoter function, and have also recently seen profound effects induced by both chromium(VI) and arsenic(III) in this system. These model systems should enable us to be able to identify the critical cis (DNA) and trans (protein) cellular targets of heavy metal exposure leading to alterations in expression of specific susceptible genes. It is anticipated that such information will provide valuable insight into the mechanistic basis for these effects as well as provide sensitive molecular biomarkers for evaluating human exposure.

PubMed ID: 9703486 Exiting the NIEHS site

MeSH Terms: Animals; Arsenic/pharmacology; Arsenic/toxicity*; Cell Transformation, Neoplastic; Chick Embryo; Chromium/pharmacology; Chromium/toxicity*; Environmental Exposure; Gene Expression/drug effects*; Genetic Markers*; Humans; Neoplasms/etiology*; Promoter Regions, Genetic; Rats; Toxicity Tests/methods; Transcription Factors

to Top