Skip Navigation

Publication Detail

Title: Elucidation of kinetic mechanisms of human translesion DNA polymerase κ using tryptophan mutants.

Authors: Zhao, Linlin; Pence, Matthew G; Eoff, Robert L; Yuan, Shuai; Fercu, Catinca A; Guengerich, F Peter

Published In FEBS J, (2014 Oct)

Abstract: To investigate the conformational dynamics of human DNA polymerase κ (hpol κ), we generated two mutants, Y50W (N-clasp region) and Y408W (linker between the thumb and little finger domains), using a Trp-null mutant (W214Y/W392H) of the hpol κ catalytic core enzyme. These mutants retained catalytic activity and similar patterns of selectivity for bypassing the DNA adduct 7,8-dihydro-8-oxo-2'-deoxyguanosine, as indicated by the results of steady-state and pre-steady-state kinetic experiments. Stopped-flow kinetic assays with hpol κ Y50W and T408W revealed a decrease in Trp fluorescence with the template G:dCTP pair but not for any mispairs. This decrease in fluorescence was not rate-limiting and is considered to be related to a conformational change necessary for correct nucleotidyl transfer. When a free 3'-hydroxyl was present on the primer, the Trp fluorescence returned to the baseline level at a rate similar to the observed kcat , suggesting that this change occurs during or after nucleotidyl transfer. However, polymerization rates (kpol ) of extended-product formation were fast, indicating that the slow fluorescence step follows phosphodiester bond formation and is rate-limiting. Pyrophosphate formation and release were fast and are likely to precede the slower relaxation step. The available kinetic data were used to fit a simplified minimal model. The extracted rate constants confirmed that the conformational change after phosphodiester bond formation was rate-limiting for hpol κ catalysis with the template G:dCTP pair.

PubMed ID: 25065501 Exiting the NIEHS site

MeSH Terms: No MeSH terms associated with this publication

Back
to Top