Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Proteome-wide remodeling of protein location and function by stress.

Authors: Lee, KiYoung; Sung, Min-Kyung; Kim, Jihyun; Kim, Kyung; Byun, Junghyun; Paik, Hyojung; Kim, Bongkeun; Huh, Won-Ki; Ideker, Trey

Published In Proc Natl Acad Sci U S A, (2014 Jul 29)

Abstract: Protein location and function can change dynamically depending on many factors, including environmental stress, disease state, age, developmental stage, and cell type. Here, we describe an integrative computational framework, called the conditional function predictor (CoFP;, for predicting changes in subcellular location and function on a proteome-wide scale. The essence of the CoFP approach is to cross-reference general knowledge about a protein and its known network of physical interactions, which typically pool measurements from diverse environments, against gene expression profiles that have been measured under specific conditions of interest. Using CoFP, we predict condition-specific subcellular locations, biological processes, and molecular functions of the yeast proteome under 18 specified conditions. In addition to highly accurate retrieval of previously known gold standard protein locations and functions, CoFP predicts previously unidentified condition-dependent locations and functions for nearly all yeast proteins. Many of these predictions can be confirmed using high-resolution cellular imaging. We show that, under DNA-damaging conditions, Tsr1, Caf120, Dip5, Skg6, Lte1, and Nnf2 change subcellular location and RNA polymerase I subunit A43, Ino2, and Ids2 show changes in DNA binding. Beyond specific predictions, this work reveals a global landscape of changing protein location and function, highlighting a surprising number of proteins that translocate from the mitochondria to the nucleus or from endoplasmic reticulum to Golgi apparatus under stress.

PubMed ID: 25028499 Exiting the NIEHS site

MeSH Terms: Animals; Cell Line; Golgi Apparatus/metabolism*; Humans; Mitochondria/metabolism*; Protein Transport/physiology; Proteome/metabolism*; Proteomics/methods; Stress, Physiological*

to Top