Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: F3-Isoprostanes as a Measure of in vivo Oxidative Damage in Caenorhabditis elegans.

Authors: Nguyen, Thuy T; Aschner, Michael

Published In Curr Protoc Toxicol, (2014 Nov 06)

Abstract: Oxidative stress has been implicated in the development of a wide variety of disease processes, including cardiovascular disease, cancer, and neurodegenerative diseases, as well as progressive and normal aging processes. Isoprostanes (IsoPs) are prostaglandin-like compounds that are generated in vivo from lipid peroxidation of arachidonic acid (AA, C20:4, ω-6) and other polyunsaturated fatty acids (PUFA). Since the discovery of IsoPs by Morrow and Roberts in 1990, quantification of IsoPs has been shown to be an excellent source of biomarkers of in vivo oxidative damage. Eicosapentaenoic acid (EPA, C20:5, ω-3) is the most abundant PUFA in Caenorhabditis elegans and gives rise to F3-IsoPs upon nonenzymatic free-radical-catalyzed lipid peroxidation. The protocol presented is the current methodology that our laboratory uses to quantify F3-IsoPs in C. elegans using gas chromatography/mass spectrometry (GC/MS). The methods described herein have been optimized and validated to provide the best sensitivity and selectivity for quantification of F3-IsoPs from C. elegans lysates.

PubMed ID: 25378241 Exiting the NIEHS site

MeSH Terms: Animals; Caenorhabditis elegans/metabolism*; Isoprostanes/metabolism*; Oxidative Stress*

to Top