Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Exposure to electronic cigarettes impairs pulmonary anti-bacterial and anti-viral defenses in a mouse model.

Authors: Sussan, Thomas E; Gajghate, Sachin; Thimmulappa, Rajesh K; Ma, Jinfang; Kim, Jung-Hyun; Sudini, Kuladeep; Consolini, Nicola; Cormier, Stephania A; Lomnicki, Slawo; Hasan, Farhana; Pekosz, Andrew; Biswal, Shyam

Published In PLoS One, (2015)

Abstract: Electronic cigarettes (E-cigs) have experienced sharp increases in popularity over the past five years due to many factors, including aggressive marketing, increased restrictions on conventional cigarettes, and a perception that E-cigs are healthy alternatives to cigarettes. Despite this perception, studies on health effects in humans are extremely limited and in vivo animal models have not been generated. Presently, we determined that E-cig vapor contains 7 x 10(11) free radicals per puff. To determine whether E-cig exposure impacts pulmonary responses in mice, we developed an inhalation chamber for E-cig exposure. Mice that were exposed to E-cig vapor contained serum cotinine concentrations that are comparable to human E-cig users. E-cig exposure for 2 weeks produced a significant increase in oxidative stress and moderate macrophage-mediated inflammation. Since, COPD patients are susceptible to bacterial and viral infections, we tested effects of E-cigs on immune response. Mice that were exposed to E-cig vapor showed significantly impaired pulmonary bacterial clearance, compared to air-exposed mice, following an intranasal infection with Streptococcus pneumonia. This defective bacterial clearance was partially due to reduced phagocytosis by alveolar macrophages from E-cig exposed mice. In response to Influenza A virus infection, E-cig exposed mice displayed increased lung viral titers and enhanced virus-induced illness and mortality. In summary, this study reports a murine model of E-cig exposure and demonstrates that E-cig exposure elicits impaired pulmonary anti-microbial defenses. Hence, E-cig exposure as an alternative to cigarette smoking must be rigorously tested in users for their effects on immune response and susceptibility to bacterial and viral infections.

PubMed ID: 25651083 Exiting the NIEHS site

MeSH Terms: Animals; Free Radicals/analysis; Influenza A Virus, H1N1 Subtype/physiology; Lung/drug effects; Lung/immunology; Lung/microbiology*; Lung/virology*; Male; Mice; Mice, Inbred C57BL; Nicotine/adverse effects*; Nicotine/chemistry*; Oxidative Stress/drug effects; Phagocytosis/drug effects; Smoking/adverse effects*; Streptococcus pneumoniae/physiology; Viral Load/drug effects; Volatilization

to Top