Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Electronic signatures of a model pollutant-particle system: chemisorbed phenol on TiO₂(110).

Authors: Patterson, Matthew C; Thibodeaux, Chad A; Kizilkaya, Orhan; Kurtz, Richard L; Poliakoff, E D; Sprunger, Phillip T

Published In Langmuir, (2015 Apr 07)

Abstract: Environmentally persistent free radicals (EPFRs) are a class of composite organic/metal oxide pollutants that have recently been discovered to form from a wide variety of substituted benzenes chemisorbed to commonly encountered oxides. Although a qualitative understanding of EPFR formation on particulate metal oxides has been achieved, a detailed understanding of the charge transfer mechanism that must accompany the creation of an unpaired radical electron is lacking. In this study, we perform photoelectron spectroscopy and electron energy loss spectroscopy on a well-defined model system-phenol chemisorbed on TiO2(110) to directly observe changes in the electronic structure of the oxide and chemisorbed phenol as a function of adsorption temperature. We show strong evidence that, upon exposure at high temperature, empty states in the TiO2 are filled and the phenol HOMO is depopulated, as has been proposed in a conceptual model of EPFR formation. This experimental evidence of charge transfer provides a deeper understanding of the EPFR formation mechanism to guide future experimental and computational studies as well as potential environmental remediation strategies.

PubMed ID: 25774565 Exiting the NIEHS site

MeSH Terms: Electron Spin Resonance Spectroscopy; Phenol/chemistry*; Phenols/chemistry*; Photoelectron Spectroscopy; Titanium/chemistry*

to Top