Skip Navigation

Publication Detail

Title: Integrated multimodal optical microscopy for structural and functional imaging of engineered and natural skin.

Authors: Zhao, Youbo; Graf, Benedikt W; Chaney, Eric J; Mahmassani, Ziad; Antoniadou, Eleni; Devolder, Ross; Kong, Hyunjoon; Boppart, Marni D; Boppart, Stephen A

Published In J Biophotonics, (2012 May)

Abstract: An integrated multimodal optical microscope is demonstrated for high-resolution, structural and functional imaging of engineered and natural skin. This microscope incorporates multiple imaging modalities including optical coherence (OCM), multi-photon (MPM), and fluorescence lifetime imaging microscopy (FLIM), enabling simultaneous visualization of multiple contrast sources and mechanisms from cells and tissues. Spatially co-registered OCM/MPM/FLIM images of multi-layered skin tissues are obtained, which are formed based on complementary information provided by different modalities, i.e., scattering information from OCM, molecular information from MPM, and functional cellular metabolism states from FLIM. Cellular structures in both the dermis and epidermis, especially different morphological and physiological states of keratinocytes from different epidermal layers, are revealed by mutually-validating images. In vivo imaging of human skin is also investigated, which demonstrates the potential of multimodal microscopy for in vivo investigation during engineered skin engraftment. This integrated imaging technique and microscope show the potential for investigating cellular dynamics in developing engineered skin and following in vivo grafting, which will help refine the control and culturing conditions necessary to obtain more robust and physiologically-relevant engineered skin substitutes.

PubMed ID: 22371330 Exiting the NIEHS site

MeSH Terms: 3T3 Cells; Animals; Collagen/metabolism; Dermis/cytology*; Epidermal Cells*; Fibroblasts/cytology; Fibroblasts/metabolism; Humans; Keratinocytes/cytology; Keratinocytes/metabolism; Mice; Microscopy/methods*; Molecular Imaging/methods*; Optical Phenomena*; Tissue Engineering*

Back
to Top