Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Random effects modeling of multiple binomial responses using the multivariate binomial logit-normal distribution.

Authors: Coull, B A; Agresti, A

Published In Biometrics, (2000 Mar)

Abstract: The multivariate binomial logit-normal distribution is a mixture distribution for which, (i) conditional on a set of success probabilities and sample size indices, a vector of counts is independent binomial variates, and (ii) the vector of logits of the parameters has a multivariate normal distribution. We use this distribution to model multivariate binomial-type responses using a vector of random effects. The vector of logits of parameters has a mean that is a linear function of explanatory variables and has an unspecified or partly specified covariance matrix. The model generalizes and provides greater flexibility than the univariate model that uses a normal random effect to account for positive correlations in clustered data. The multivariate model is useful when different elements of the response vector refer to different characteristics, each of which may naturally have its own random effect. It is also useful for repeated binary measurement of a single response when there is a nonexchangeable association structure, such as one often expects with longitudinal data or when negative association exists for at least one pair of responses. We apply the model to an influenza study with repeated responses in which some pairs are negatively associated and to a developmental toxicity study with continuation-ratio logits applied to an ordinal response with clustered observations.

PubMed ID: 10783779 Exiting the NIEHS site

MeSH Terms: Abnormalities, Drug-Induced/etiology; Animals; Biometry; Epidemiologic Methods; Ethylene Glycol/administration & dosage; Ethylene Glycol/toxicity; Female; Humans; Influenza, Human/epidemiology; Linear Models; Logistic Models; Mice; Models, Statistical*; Multivariate Analysis; Pregnancy; Research Support, U.S. Gov't, Non-P.H.S.; Research Support, U.S. Gov't, P.H.S.

Back
to Top