Skip Navigation
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Your Environment. Your Health.

Publication Detail

Title: Arsenic inhibits NF-kappaB-mediated gene transcription by blocking IkappaB kinase activity and IkappaBalpha phosphorylation and degradation.

Authors: Roussel, R R; Barchowsky, A

Published In Arch Biochem Biophys, (2000 May 1)

Abstract: The inflammatory cytokine, TNF-alpha, induces IL-8 gene transcription via a mechanism involving proteasome-mediated IkappaBalpha degradation and NF-kappaB activation. Here, we investigated whether arsenic, which has been shown to inhibit the ubiquitin-proteasome pathway, could inhibit TNF-alpha-mediated increases in IL-8 expression. Using RT-PCR, we show that the addition of TNF-alpha to human bronchial epithelial (BEAS 2B) or embryonic kidney (HEK293) cells resulted in increased steady-state levels of IL-8 mRNA. This was preceded by a rapid decrease in cellular IkappaBalpha levels, as demonstrated by Western analysis, and an increase in nuclear levels of NF-kappaB, as demonstrated by gel shift analysis. Further demonstrating the activation of NF-kappaB, TNF-alpha induced the transcription of a NF-kappaB-dependent reporter gene. Exposing the cells to 500 microM arsenite, prior to adding TNF-alpha, completely inhibited IkappaBalpha degradation, NF-kappaB translocation, NF-kappaB-dependent gene transcription, and transcription of the endogenous gene for IL-8. In comparison with the proteasome inhibitor MG-132, which does not affect the phosphorylation and ubiquitination of IkappaBalpha, arsenite inhibited the phosphorylation of IkappaBalpha. Furthermore, arsenite directly blocked the activity of IKK, the kinase responsible for IkappaBalpha phosphorylation. These studies demonstrate that high levels of arsenic may inhibit NF-kappaB-mediated gene transcription by specifically blocking IKK activity, thereby limiting the phosphorylation and subsequent degradation of the NF-kappaB inhibitor, IkappaBalpha.

PubMed ID: 10775461 Exiting the NIEHS site

MeSH Terms: Anisomycin/pharmacology; Arsenites/pharmacology*; Cell Line; Cell Nucleus/drug effects; Cell Nucleus/metabolism; DNA-Binding Proteins/metabolism*; DNA/genetics; DNA/metabolism; Dose-Response Relationship, Drug; Enzyme Activation/drug effects; Humans; I-kappa B Kinase; I-kappa B Proteins*; Interleukin-8/genetics; JNK Mitogen-Activated Protein Kinases; Mitogen-Activated Protein Kinases/metabolism; NF-kappa B/metabolism*; Phosphorylation/drug effects; Phosphotyrosine/metabolism; Protein-Serine-Threonine Kinases/antagonists & inhibitors*; Protein-Serine-Threonine Kinases/metabolism; RNA, Messenger/genetics; RNA, Messenger/metabolism; Transcription Factor AP-1/physiology; Transcription, Genetic/drug effects*; Transcriptional Activation/drug effects; Transfection; Tumor Necrosis Factor-alpha/antagonists & inhibitors; Tumor Necrosis Factor-alpha/pharmacology; p38 Mitogen-Activated Protein Kinases

to Top